
Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

53

4. Program Flow Control

Overview

 Just as calculations are the heart of any computer program, decision-making
commands are just as essential for writing large and flexible programs. Programs need to
be able to handle choices made by the user, make decisions about how to handle data and
deal with different data values produced at different times by your methods or external
code written in other languages such as operating system routines. Prograph provides a
number of decision-making program elements to allow you to control the flow of your
program according to the situation at hand.

 In this chapter, we’ll examine Prograph’s decision-making constructs -- matches,
controls and injects -- and how they regulate the flow of a program by directing execution
to different portions of code. In addition, we’ll discuss using recursion in Prograph
programs.

Decision-making and Cases

 Decisions are carried out by creating more than one case of code for a method.
Every method contains by default a single case, shown when you first open a method’s
code window. If no decision-making commands are used in the method, this single case
is sufficient on its own. But once a decision has to be made, the program requires more
than one case -- more than one possible set of instructions that can be carried out. If the
decision has one particular outcome, one case’s code will be executed. If another
outcome results, a different case’s code must be executed instead. This logic is shown in
Figure 4.1 in C++ language code. We’ll show you how this works below.

if (condition1) {
 // case 2
}
else {
 // case 1
}

Figure 4.1: Decision-making and cases

The Match Construct

 Matches are essentially “true-false” tests, similar to the “if-then” and “if-then-
else” constructs of the C++ language. The match checks if a given condition is met or
not, and executes one or another case or block of code accordingly. Let’s put a match to
work. Starting with a fresh project and section, create a universal method named Toss A
Coin and open its default case window. The default window of a method is case 1 out of
1 possible cases, hence the “1:1” (case 1 out of 1) in front of the method name in the

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

54

window title. We will write a method to ask the user for the result of a coin toss (“heads”
or “tails”). On the basis of the coin toss, we’ll display an appropriate message.

 Write the code shown in Figure 4.2 for the Toss A Coin method. The answer
primitive will prompt the user with a message to select one of the buttons presented in a
dialog box. The names of the buttons, as well as the prompt, are the inputs to the
answer primitive. Its output is the name of the button clicked by the user. We’ll use the
prompt “Heads or tails?”, and name the buttons “Heads” and “Tails,” respectively.

Figure 4.2: User selection and logical decision-making processes in the
Toss A Coin method

 The match below the answer primitive call will check to see if the user selected
the “Heads” button in the dialog box by reading the value returned by the answer
primitive and checking for a match to the text “Heads”. What will the match do after it's
checked for the value of this string? This depends upon the type of control in the box on
the right-hand side of the match icon. The “X” symbol in the control indicates that the
match will direct the flow of the code so that it goes to the next case if the match fails.
That is, if the string returned by answer is not “Heads”, the code contained in a second
case window (which we haven't created yet) will be executed. If the match succeeds, the
remaining code in case window 1 (the one we’ve been working in) will be executed
instead. This is equivalent to the C++ code of Figure 4.3.

#include <streams.hp>
#include <string.h>

void
TossACoin(void)
{
 char toss[32];

 cout << “Select heads or tails: ”;
 cin >> toss;

 if (! strcmp(toss, heads)) {

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

55

 // case 2
 }
 else {
 // case 1
 }
}

Figure 4.3: Equivalent C++ code for the decision-making process of the

Toss A Coin method

 Now we must provide the code that the method will execute depending upon the
button selected by the user. We now know that the match will go to another case window
if the match test fails. Our task for the case when the match succeeds is simpler -- the
remaining code in the existing case window will be executed. So let’s put some code
there to be executed. We’ll just have the computer display the message “You chose
Heads!” with a show primitive.

Figure 4.4: First case of the decision-making process

 We still only have one case at present, shown in this default code window
(window 1:1). We now need a second case for the code to be executed when the match
fails. How do we create one? Notice the three symbols in the right-hand side of the title
bar of the Toss A Coin window, shown in Figure 4.5.

Figure 4.5: Case control buttons in the case window title bar

 These are case control buttons, used to list and display all of the cases of a
method. Move the mouse to the middle control -- the Case List button -- and select it.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

56

Figure 4.6: Selecting the Case List button

 At the bottom of the window, a list called a case palette (see Figure 4.7) appears
showing all of the cases that have already been created. At present, only one case exists --
shown in the default Toss A Coin method window -- so the list only contains a symbol
with a 1 in it.

Figure 4.7: Case Palette at the bottom of a case window

 Create a second item in the case palette next to the 1 symbol. This shows that
we’ve now created case 2, (see Figure 4.8). The case indicator numbers in the title of the
Toss A Coin window now reflect the fact that there are 2 case windows, with the
currently visible window now containing case 1 out of 2 possible cases (1:2).

Figure 4.8: Adding a second case to a method with the Case Palette

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

57

Figure 4.9: First case window after creating a second case

 Open the window for case 2 by selecting the Next Case button in the window title
bar (Figure 4.10). Notice that the title of this window indicates that this is case 2 out of 2
possible cases (2:2).

Figure 4.10: Moving to the next case window

 In the new window, create a show primitive to display the text “You chose
tails!”.

Figure 4.11: The completed second case of the Toss A Coin method

 The Toss A Coin program is now complete. Let’s go through the code, step by
step. When the Toss A Coin method starts, the user is presented with a dialog box that
asks them to select whether a coin toss is “heads” or “tails” by selecting one of two
buttons in the dialog. The response (either “Heads” or “Tails”) is sent to a match, which
tests whether the text is equal to “Heads.” If it is not (the test failed), case 2’s code is
executed, and a message is displayed stating that “Tails” was selected. If the text indeed
was “Heads”, case 1 continues and a message is displayed stating that “Heads” was
selected.

 Having two separate windows for the two cases visually reinforces the two
possible paths of execution of the Toss A Coin method, where one given case will

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

58

execute depending upon the outcome of a logical match operator. This immediate
recognition of individual cases will be even more evident for large blocks of code. In
textual languages, as the blocks of code after a logical statement get larger, it gets harder
and harder to tell where one block ends and the next block begins, making it difficult to
trace the alternative paths of execution. In Prograph, you just can’t make that kind of
mistake reading your code.

Exercise 4.1:
Write a method called Ask Opinion that asks the user if they enjoy using Prograph, and
gives them a choice of responding Yes or No. If they choose Yes, respond with “I’m
glad you like it!”. If they choose No, respond with “Sorry…but Prograph grows on
you!”.

Multiple Cases

 Your programs can now carry out different actions according to the selections the
user makes. But what if the decision to be made is not a simple yes-no (or true-false)
decision? For example, what if we wanted to test if a student received either a passing
grade on an exam or a failing grade, or if we just accidentally typed in an invalid grade?
This is not a simple true-false decision since there are three categories of grades --
passing, failing or invalid. Fortunately, matches may be combined to produce more
complex decision-making rules, much like the switch statement in C++, whose logic is
shown in Figure 4.12.

switch (selector) {
 case condition 1:
 // execute case 1 code
 break;
 case condition 2:
 // execute case 2 code
 break;
 case condition 3:
 // execute case 3 code
 break;
}

Figure 4.12: The logic of a multiple case decision

 Create a new project with a section and method each named Grade Exams. Open
this method’s case window and enter the code diagram pictured in Figure 4.13.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

59

Figure 4.13: The Grade Exams method

 Now open (and create) the Check Grade method’s case window. Notice that the
input bar will contain an input node since this method expects one input number: the
grade. Complete the case window as shown in Figure 4.14. The ≥ (greater than or equal)
and ≤ (less than or equal) primitive names may also be typed in as “>=” and “<=”.

Figure 4.14: First case of the Check Grade method

 In this first case of Check Grade, the grade that is fed into the method is subjected
to two logical tests -- to see if it is greater than or equal to 50, our cut-off for a passing
grade, and if it's less than or equal to 100, the highest possible grade. Both of these tests
must succeed if the remaining code in this case window is to be executed. We ensure that
both tests’ outcomes are combined into one larger logical test for the range of grades
between 50 and 100 by using the logical and primitive, which itself performs a match
test, as can be seen by the match control on its primitive icon. The outcomes of both the
≥ test and the ≤ test must be successful if the and test is to succeed. If either the ≥ or ≤
tests fail, the and test will fail.

 If the and test succeeds, that is, if the grade is between 50 and 100, case 1
displays the message “Passed!”. If any one of the ≥, ≤ or and tests fails, the second case

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

60

is entered. Let’s define the second case as shown in Figure 5.15. Remember that you
need to click on the Case List button in the window’s title bar to open the case palette and
create new cases.

Figure 4.15: Second case of the Check Grade method

 In the second case, the grade is tested once again with the aid of the and
primitive. If the grade is between 0 and 50, this case’s tests are successful and the
remaining code of case 2 is executed -- the message “Failed!” is displayed. If any of case
2’s tests fail, a third case is executed.

 Case 3 is much simpler. The method will only reach the code in case 3 if the tests
in both case 1 and case 2 fail. That is, case 3 is executed only if the grade entered is
invalid -- less than 0 or greater than 100. The message “Invalid grade!” is displayed in
this event.

Figure 4.16: Third case of the Check Grade method

Exercise 4.2:

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

61

Write a program called Play Dice that plays a dice game. Generate a random number
from 2 to 12 to simulate the tossing of two dice. If the roll is a 2, output “Snake eyes!
You lose!”. If the roll is a 12, output “Box cars! You lose!”. If the roll is a 7 or 11,
output “A natural! You win!”. For any other roll, simply output “Your point is ”,
followed by that number.

Hint: To generate a random number from A to B, inclusive, first integer-divide (the ÷÷
primitive) a random integer number obtained with the rand primitive by the range of
numbers desired (B-A+1). For example, if you wish to obtain random numbers from 10
to 20 (A=10, B=20), divide the output of the rand primitive by (B-A+1) or (20-10+1),
that is, 11. Then add the lower bound of the range (A) to the remainder of this division.
In the case of our example, that would require adding A=10 to the remainder 9.

 Let’s review one more example of using matches and multiple cases, since the
concept of having many code windows for one method can be difficult to grasp at first.
Create a new project, section and method called Choose An Action. Complete the Choose
An Action method’s first case window as shown in Figure 4.17.

Figure 4.17: The Choose An Action method

 We use the answer-v primitive to present a vertical list of three possible actions
to be selected by the user: calculating the square root of a number, choosing a (random)
“lucky number,” and finding the maximum of two numbers. The dialog box that prompts
the user for a selection is shown below. Once the choice has been made, it is sent to a
universal method called Process Request.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

62

Figure 4.18: Dialog box presented by the answer-v primitive

 Open the first (default) case window of Process Request. Complete the case
window’s code diagram as follows in Figure 4.19. This case will check if the selection
made was “Square Root”. If not, the next case will be entered. In this first case, we use
the sqrt primitive, which calculates the square root of a number. The show primitive then
displays the square root to the user.

Figure 4.19: First case of the Process Request method

 Open the case palette by clicking on the Case List button and create two
additional cases for this method. The second case will test if the user selection was
“Lucky Number”. If it was not selected, the third case will be entered. If “Lucky
Number” was selected, we use the rand primitive to generate a random positive number
to be displayed by a show primitive.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

63

Figure 4.20: Second case of the Process Request method

 The final case is entered only if the first two cases’ matches fail. This method
compares two numbers input by the user with the max primitive and displays the
maximum of the two numbers.

Figure 4.21: Third case of the Process Request method

 This example program has shown a simple way to allow the user to select what
actions a program should take by presenting a dialog box of possible actions and applying
a match test to route the code execution to the appropriate case. By the simple
combination of the answer-v primitive to prompt the user for a choice and a match
construct, we have allowed the program to take several courses of action at run-time.

Exercise 4.3:
Create a Prograph method called Trig Functions that asks the user to enter an angle (in
degrees), then asks the user to select whether to calculate the angle’s sine, cosine or
tangent. Depending upon the user’s choice, the program should calculate the sine,
cosine or tangent and display the appropriate result. Use the round primitive to round
off the results to five decimal places before displaying it.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

64

The Control Construct

 We’ve seen how the match construct allows a program to modify its actions
according to user selections or data values. However, up to this point, we’ve only used
one type of control on a match -- testing for failure of the match test. Matches are
actually more versatile than this, and may perform other types of actions according to the
control we choose to associate with the match.

 We’ve also seen that matches are not the only way to make decisions in a
program. Decision-making may also be done by logical primitives such as the and and
or primitives, which themselves contain match tests.

Next Case on Failure

 Just to review, the next case on failure control’s symbol is an X, which means
“go to the next case immediately if the match test fails.” In other words, if the match
fails, the current case’s code is stopped right at the point of the match test, and the
program execution jumps to the next case’s code. In the example below, the next case is
entered if the number tested fails to be equal to zero. If the test succeeds (the number is
equal to zero), the rest of the code in the current case is executed.

Figure 4.22: Failure control on a match -- Go to next case on failure

Next Case on Success

 The next case on success control’s symbol is a √, which means “go to the next
case immediately if the match test succeeds.” In the example below, the next case is
entered if the number tested is equal to zero. If the test fails (the number is not equal to
zero), the rest of the code in the current case is executed.

Figure 4.23: Success control on a match -- Go to next case on success

 When match icons are first created, they are by default tests for failure. To change
the control of a match so that it enters the next case on success of the test, use the Failure-
Success Conversion item in the Controls Menu.

Continue

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

65

Figure 4.24: The Continue control

 The continue control allows the remainder of the code in the current case to
continue executing even if the match test fails. We use only the “continue on failure”
notation since “continue on success” would be an unnecessary test.

 The continue control has two bars in its icon -- one at its top and one at its bottom
-- to represent the method's input bar and output bar. This indicates that the continue
control allows the method to continue its flow from the method's start to its end.

Terminate

Figure 4.25: The Terminate control

 If the match conditions are met, the terminate control ensures that the current case
is exited immediately and its remaining code is not executed. For example, in Figure 4.25,
if the number the match receives as an input is not equal to zero, the current case is exited
and a second case is entered. This is especially useful for repetitive methods like loops
and repeats, which we’ll discuss in the next chapter. Not only does terminate stop the
current execution of the method, it also prevents further repetition of the method.

 The terminate control has one bar in its icon at its top to represent the method's
input bar. The output bar is not represented, indicating that the terminate control prevents
the method from completing its flow to the method’s end.

Finish

Figure 4.26: The Finish control

 The finish control is similar to terminate. However, if the match conditions are
met, the finish control allows the remaining code of the current case to be executed once,
but it prevents further repetition of the method in loops and repeats.

 The finish control has one bar in its icon at its bottom to represent the method's
output bar. There is no input bar picture, indicating that the finish control allows the
method to complete its flow to its end (but not start again in a repetition).

Inject

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

66

 Methods such as primitives that are called by your program have predefined
names. You must know before you can run your program exactly which methods you’ll
call and what those methods’ precise names are. But what if you don’t know in advance
which method to run? What if you need the user of the program to make that choice at
run-time, so the interpreter won't know which method to call until the program is run?

 The inject construct is a tool for calling a method whose name is defined only at
run-time. Let's see just how useful an inject can be. We'll write a program that will ask
the user for an angle, then ask what calculation to do on this angle. According to the
user's selection, the appropriate calculation will be done.

 Create a new program, section and method called Choose Trig Function, and fill
the Choose Trig Function case window as shown in Figure 4.27.

Figure 4.27: The Select Trig Function method

 Remember that trigonometric primitives such as sin, cos and tan require that
the input angle be expressed in radians rather than degrees. Earlier in the book, you were
asked to write two methods to convert angles from degrees to radians and from radians to
degrees. Those methods should have been saved in a section called Angle Conversions.
We’re going to make use of the methods in that section again by using the Add Section
item of the File Menu. This program will be the first that you’ll write containing more
than one section. Add Section allows you to load those parts of another program that you
wish to reuse and merge them with a program you're working on now. After adding the
Angle Conversions to the current program, you’ll see that the Sections window now
contains the new section. The Universal Methods window of that section contains the
methods Degrees To Radians and Radians To Degrees that you saved previously. We can
now use these two methods in our program.

Figure 4.28: Angle Conversions section added to the current program

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

67

 Complete the code diagram for the Get Angle local method as shown in Figure
4.29. We use the Degrees To Radians conversion method to be sure that angle returned
by the Get Angle method is in the proper format for the calculations we’ll do on the angle
later. The Get Angle method will output the angle both in degrees (to be displayed at the
end of the program) and in radians (for calculations).

Figure 4.29: The Get Angles local method

 The Pick a Trig Function method is simpler. It uses the answer-v primitive to
ask the user to pick a trigonometric calculation to perform on the angle. Notice the names
that will be placed in the buttons of answer-v’s dialog box. They are “sin”, “cos” and
“tan”, the names of the primitives used to perform the sine, cosine and tangent
calculations. The name of the trigonometric primitive that will be called next is selected
by the user, returned by answer-v, and output by the Pick a Trig Function method.

Figure 4.30: The Pick A Trig Function local method

 Now we must make an operation that will call the requested trigonometric
primitive. We could add match tests and three cases that would call either the sin, cos
or tan primitives. Or we could use the inject operation. Return to the Select Trig
Function case window and create a new program element below the Pick a Trig Function
icon. Give it two input terminal nodes. The left node will receive the angle from the Get
Angle local method. The right node receives the output of Pick a Trig Function.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

68

Figure 4.31: The Select Trig Function method

 The right root node of this operation is an inject node, and the blank operation
looks like a nameless method. The shape of the inject node actually looks as if it’s
injecting something into the method icon, and it is -- this method’s name. The method
will take the place of a match and three cases with calls to the sin, cos, or tan
primitives. The inject node tells this method to call the primitive whose name is output by
the Pick a Trig Function local method.

By The Way...

The inject node is also used widely throughout the Application
Builder Classes library code that will form the basis for Prograph
program user interfaces. Injects are used to determine what code
to call when a particular user interface element is selected by the
user of the program.

 Since all three of the possible primitives that may be called require one input --
the angle -- and one output -- the result of their calculation -- we must include nodes for
the three primitives’ input and output on this method icon. That is why we have two input
terminals and one output root on this injected method -- one input and one output to serve
as the trigonometric primitives’ input and output, and one input terminal to inject the
name of which trigonometric primitive to call.

 Now our program will take the angle entered by the user and calculate its sine if
the user selects “sin”, its cosine if “cos” is selected, or its tangent if “tan” is selected.
The last step is to display the answer with a show primitive. However, trigonometric
calculations will produce real numbers with many decimal places. Do we really want to
display all of those decimal places? Probably not. We’ll truncate the number, that is,
limit the number of decimal places displayed to two places with a primitive called
round.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

69

Exercise 4.4:
Write a program called Triangles that offers the user the following menu selections:

• Find Hypotenuse
• Find Leg
• Find Angles

Each choice by the user will call the appropriately named method (each of which you
will write). Find Hypotenuse will ask the user for two legs of a triangle and output the
hypotenuse of the triangle. Find Leg should ask the user for one leg and the hypotenuse,
then output the second leg. Find Angles will ask for the opposite leg and the
hypotenuse, then display the size of the angles of the triangle.

Recursion

 As a final lesson in structured programming, we’ll examine an example of the use
of recursion -- the calling of a method by its self. In mathematics, an exclamation point
written after a number means factorial. For example, 7! means “seven factorial”.
Factorial notation is used to calculate statistical probability (permutations and
combinations). It's a short way to represent a multiplication of a number by all integers
smaller than itself. For example,

 6! = 6 * 5 * 4 * 3 * 2 * 1
 7! = 7 * 6 * 5 * 4 * 3 * 2 * 1

 By definition, 1! and 0! both are equal to 1.

 Note that n! = n * (n-1)!. For example, 7! = 7 * 6!, and 6! = 6 * 5!, etc. This
technique of defining one factorial multiplication in terms of another simpler
multiplication is what recursion is all about. In this lesson, we’ll use recursion to
calculate the factorial of a number.

 Create methods called Recursion and Factorial. Open the Recursion case window
and complete its code diagram as shown in Figure 4.32.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

70

Figure 4.32: The Recursion method

 Notice the right node on the ask primitive. This second node makes it possible to
provide a default value that will appear each time the ask dialog is presented. In this
program, the prompt “Enter number to factorial:” is presented, along with the number 10
in the text-entry portion of the dialog. If the user wants to use the value 10, all he or she
has to do is hit the Return key and this default value of 10 will be used by the program.

 Now enter the first case of the Factorial method. This method checks if its input is
equal to 1. If it is, the remaining code in this case is executed, and a value of 1 (1! by
definition) is output.

Figure 4.33: First case of the Factorial method

 If the input value is not equal to 1, the second case is executed. In case 2, the
input number is decremented and sent to Factorial again. If the input number was n, the
value of n-1 would be sent again to factorial, then n-2, etc., on and on until the
decrementing reached a value of 1. At that point, all of the multiplications would be
carried out, yielding n! = n * (n-1) * (n-2) * … * 1. The factorial is carried out by making
the program calculate n! = n * (n-1)!. The value of (n-1)! is then calculated as (n-1) * (n-
2)!, etc.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

71

Figure 4.34: Second case of the Factorial method

 When the program is executed, the user is asked to enter a number to factorial.
The default is 10. Hit return to use this value, or enter a new value.

Figure 4.35: Prompt to number for which factorial is calculated

 The factorial of the number is then calculated and presented to the user.

Exercise 4.5:
Write a program to perform exponentiation of a number using recursion instead of the
power primitive. Create a method called Recursive Power. Keep in mind that

4
7
 = 4 * 4

6
 and 4

6
 = 4 * 4

5
 etc.

The program should ask for both the base (the number to be exponentiated, or the
number 4 in 47), which should default to a value of 2, and the exponent (the power, or
the 7 in 47), which should default to a value of 5. This means that if the user hits the
Return key on both prompts, the answer would be 25 or 32.

Summary

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

72

 In this chapter we examined several constructs of Prograph that are responsible
for redirecting the flow of control of the program code:

• The match construct is equivalent to an if-then, if-then-else or switch
statement of other programming languages. It executes one or another block
of code depending upon the value of a conditional statement. These blocks of
code are displayed in separate case windows for easy interpretation by the
programmer.

• Controls alter the logical test performed by a match test so that the next case

is executed when the match either succeeds or fails. The rest of the method
containing the match is either executed (finish control) or not (terminate
control).

• The inject node allows the name of a method (and therefore which method to

execute) to be determined entirely at run-time.

• Recursion is a programming technique in which a method “calls itself”

repeatedly until a given condition is met. It is useful for certain types of
repetitive operations such as factorials, exponentials or power series, which
are commonly used in mathematics and engineering.

