
Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

185

12. Using the Full Power of OOP

Overview

 The process of inheritance that we examined in the last chapter affords us with the
ability to build new classes using features of other, already coded and tested, classes. This
mechanism would not be very useful if we always had to be aware of which class we
were sending requests to -- a parent class or its subclass. As an example, let’s say we fed
an instance of either a class such as the IntArray or a subclass of it called SortedIntArray
into a method (note that in this case, IntArray is itself a parent class as well as the
subclass of the more general Array). If we wanted to execute a class method of
whichever instance arrived as that input, we would have a lot of difficulty if we had to
actually identify the incoming object. How would we know if it was an object of type
IntArray or SortedIntArray? There’d be no easy way to know. Fortunately,
polymorphism removes the need to know this. In this chapter, we’ll examine how
polymorphism both simplifies our programming task and enables more powerful uses of
classes. We’ll also take a brief detour into the use of class attributes, data shared among
several objects of a single class.

Polymorphism

 One of the advantages of using similar class method names within similar classes
is that we can take advantage of polymorphism -- the ability to send the same request to
different objects without the need to know exactly which object is satisfying the request.
Let’s see how this works with a concrete example.

 Add a ShowPosition class method to each of the shape classes we’ve developed
so far: Coordinate, Line and Rectangle (from Exercise 11.2). Your Rectangle class
may be slightly different from ours, which uses composition and includes four Line
objects to represent the four sides of the Rectangle. You may have to modify the
Rectangle/ShowPosition method to match your own Rectangle class design.

 The Coordinate class’ ShowPosition method (Figure 12.1) prints the values of
the x and y attributes. The corresponding method for the Line class (Figure 12.2) prints
the horizontal and vertical positions of its start and end points. Finally, the
ShowPosition method of the Rectangle class (Figure 12.3) prints the start and end
points of each of its constituent Lines.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

186

Figure 12.1: ShowPosition method of the Coordinate class

Figure 12.2: ShowPosition method of the Line class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

187

Figure 12.3: ShowPosition method of the Rectangle class

 These three class methods all perform equivalent actions. They print out the
current position of the Coordinate, the Line starting-point and endpoint, and the
Rectangle upper-left and lower-right corners. We should be able to send the same
ShowPosition request to either a Coordinate, Line or Rectangle object and have the
position of the appropriate shape displayed on the screen. Let’s try it! Create a persistent
called shapeList (see Figure 12.4) and make it of type list. This list will serve to hold a
collection of different shape objects.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

188

Figure 12.4: shapeList Persistent for holding list of objects created from
shape classes (Coordinate, Line and Rectangle)

 Now create a universal method called TestShapeList and complete its code case
window as shown in Figure 12.5.

Coordinate point;
Line line;
Rectangle rect;

// Hypothetical
parameterized
// List class containing
// Shape objects

List<Shape> *shpLst;

void TestShapeList(void)
{
 shpLst = new List<Shape>;
 shpLst->Add(point);
 shpLst->Add(line);
 shpLst->Add(rect);
 for (short i = 0; i <
 shpLst->Length(); i++) {
 // Overloaded [] operator
 shpLst[i]-
>ShowPosition();
 }
}

Figure 12.5: TestShapeList universal method and a possible C++
counterpart

 The TestShapeList method is fairly simple. After initializing the shapeList
persistent to an empty list, it attaches a Coordinate, Line and Rectangle to the
persistent’s list of Shape objects. Then, using a list multiplex, sends a ShowPosition
request to each shape object in its list, one after another. The TestShapeList method does
not know what shapes are stored in the persistent or in what order they are in. All it
knows is that it has sent the same ShowPosition request to each object in the persistent’s
list. It is up to those objects themselves to correctly respond to that request.

 When we execute the TestShapeList universal method, we are presented with
three Show dialogs that display the position of the Coordinate, Line and Rectangle in
that list in turn. These outputs are shown in Figures 12.6-12.8 (only the output for the top
line of the Rectangle is shown here). Each object in the list, upon receiving the

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

189

ShowPosition request, does in fact display the position of the shape that the particular
object represents in a manner specific to that shape.

Figure 12.6: Output of the TestShapeList method for Coordinate object

Figure 12.7: Output of the TestShapeList method for Line object

Figure 12.8: First show primitive output display for Rectangle object

 Prograph did not need to know that the list contained a Coordinate, Line and
Rectangle. to handle each ShowPosition request. All that mattered is that each class,
whatever it was, had the ability to accept and process a ShowPosition request. We no
longer have to explicitly send a specific request to one object
(Coordinate/ShowPosition), then another specific request to the next object
(Line/ShowPosition), etc. We can treat the list of shapes just like any other list and
iterate the same request (/ShowPosition) to each its members in the same way using a
list multiplex.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

190

 The ability to send identical requests to all members of a list of objects opens up a
lot of possibilities. As we just saw, it could be used in lists of shape objects in a drawing
program. For example, to update a drawing program’s display window, we need only
send a Draw request to each shape in its list of shape objects via a list multiplex. To
update the salary of all employees in a company, no matter if they’re factory workers,
executives or janitors, we can send an identical GiveRaise request to a list of objects
subclassed from an Employee class. Polymorphism provides us both with a way to
reduce the number of different method names we need to use with different classes and
with a powerful way to use lists and objects together.

Shared Class Attributes

 In Chapter 9, we mentioned that attributes come in two types -- instance attributes
and class attributes. So far, we’ve used only instance attributes, whose value differs in
each object created from that class type. This section will focus upon class attributes.
These are attributes that are shared by all objects created from that class. In C++, static
class members serve this function.

 Class attributes allow us to do two powerful tasks. First of all, we can set up an
attribute whose value is the same for all objects of that class type. This class attribute
serves in a sense as a constant shared by all of the objects. So, for example, we could
place a commonly-used number like salesTaxRate in every object of type
PurchasedGoods. Any method that needed to access the sales tax rate would read the
value of the salesTaxRate class attribute. If the value of salesTaxRate were to be
changed, it would automatically change for every object of that class.

 The second use of class attributes is the inclusion of a list of objects. Let’s say we
wanted to make a list of students taking a college course. Instead of storing the student
list in a persistent, we could store it within the class itself by using a class attribute. The
list class attribute will act just like a persistent (even retaining its previous value when a
program is rerun, just like a persistent) but it is encapsulated into the class.

 Create a new program, and make a new section called StudentList and a class
called Student. Open the Student class attributes window, and complete it as shown
below. There are four attributes. Three of these are instance attributes, containing the
Student’s ID number, name and class year. The fourth is a class attribute called
studentList. The studentList attribute will contain a list of all of the objects we create
from the Student class. At present, it is empty.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

191

class Student {
static List<Student> fStudentList;
public:
 // Class methods
private:
 short fID;
 char fName[256];
 short fClassYear;
};

Figure 12.9: Class attributes and instance attributes of the Student class

with the C++ equivalent using a static parameterized List class

 The first class method of the Student class is FindStudent (Figure 12.10). It
accepts an index into the studentList, and returns that corresponding Student.

Figure 12.10: FindStudent method of the Student class

 The ClearStudentList method, shown in Figure 12.11, removes the current
contents of the studentList by setting the studentList to an empty list. You may have
noticed that we do not feed an instance of the Student class as an input into this class
method. This is completely different from every other class method we’ve written up to
now. Why are we doing this? We’ll explain this shortly.

Figure 12.11: ClearStudentList method of the Student class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

192

 The ShowStudent method prints out the values of all of the instance attributes of
the Student object receiving this message.

Figure 12.12: ShowStudent method of the Student class

 The ShowAllStudents class method takes advantage of the ShowStudent
method (see Figure 12.13). ShowAllStudents reads the studentList attribute of a
Student object, then calls the ShowStudent method repeatedly with a list multiplex.
The result is that the attributes of each Student object is displayed.

Figure 12.13: ShowAllStudents method of the Student class

 The last class method is the instance method (see Figure 12.14). It first initializes
the attributes of a newly-generated instance of Student, then inserts this new Student
onto the end of the studentList.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

193

Figure 12.14: Instance method of the Student class

 Finally, we come to the universal method that will test the Student class --
TestStudentList. This method clears the studentList, creates two objects of type
Student, then uses the FindStudent class method to access the second Student in the
studentList. It passes the second Student to the TestStudent local method, which resets
its instance attributes to new values. We do this so we can tell apart the two students

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

194

when we next display their attributes by getting the studentList and sending a
ShowStudent request to each Student in the list.

Figure 12.15: TestStudentList universal method

 Did you notice that the TestStudentList method called the ClearStudentList
class method (whose code was shown in Figure 12.11) without feeding it an instance of
Student for an input? Now we can explain why ClearStudentList was written the way it
was.

 Class methods may be called in any one of three different ways (see Figure
12.16): The first is the data-determined class method call, with the syntax
“/MethodName”, where the first input to the method must be an instance of a class
containing a class method named MethodName. This is the technique we’ve used so far
in Chapters 10 through 12. This technique allows for polymorphism, since more than one

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

195

type of object can be used as an input to the method call. The method that is actually
executed is determined by which instance arrives as that input. The second way to call a
class method is a context-determined method call, which has the syntax
“//MethodName”. This may be used when one class method calls another class method.
Here, the called method is assumed by Prograph to be in the same class as the method
that is calling it. Therefore, we don’t need to supply an input instance to the called
method. The third way of calling a class method is what we used for the
ClearStudentList method. it, too, does not require the input of an instance of a class into
the called method. This is why the ClearStudentList method of Figure 12.11 has no
inputs, and why the TestStudentList method (see Figure 12.15) feeds no objects into
ClearStudentList when calling it. This is an explicit method call, in which the name of
the class containing the class method to be executed is explicity stated in the form
“Class/MethodName”.

 If we had not used an explicit method call in the ClearStudentList method, then
a third instance of Student would have to have been generated in the TestStudentList
method for the sole purpose of using it as input to ClearStudentList. This is waste of
both memory space and execution time. Remember that studentList is a class attribute -
- any time the ClearStudentList class method is called, this shared attribute will be
cleared for all existing or nonexistent Student objects. Even if the ClearStudentList
method is not called by an existing instance of the class, it will still clear the shared
attribute in memory. With an explicit method call, an extra instance of Student need not
be generated simply to call ClearStudentList.

Data-determined
class method call

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

196

Context-determined

class method call

Explicit
class method call

Figure 12.16: The three ways to call a class method

 What is the outcome of the TestStudentList method? It displays three Show
dialogs, depicted in Figure 12.17, that tell us the settings of the instance attributes of each
Student in the studentList. The first and third Students will have the default settings
for its instance attributes, while the second Student will have the instance attribute
values we set for it in the TestStudent local method of TestStudentList.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

197

Figure 12.17: Output of the TestStudentList universal method

Warning!

Class attributes behave in many ways like persistents embedded
within an object. When a program is run in the Prograph
interpreter, class attributes retain their value between program
executions much like a persistent. If you use a class attribute to
contain a list, as we did in the Student List example program, that
list will maintain all of its items when the program is run again;
you must explicitly clear the list either by: (1) editing the class
before executing the program again or (2) calling a class method
to clear the class attribute’s list when the program starts up. If
such a list is used in compiled programs, we would have to use
the save and load primitives to explicitly save the class
attrubute’s value to disk then restore it the next time the program
is run. Otherwise, the class attribute will be initialized to an
empty list each time the program is run.

Exercise 12.1:

This is an optional, more difficult exercise. Write a small OOP program that includes
the classes Student, Instructor, Course and Schedule, using subclassing to design the
Student and Instructor classes. The focus of this exercise is on message passing
between classes, so for example if a Student needs to enroll in a course, the Student
should request the Instructor for permission to do so. The Instructor will decide
whether or not it will be permitted by sending a message to the Course to check if the
Student has completed the prerequisites of the Course. Include a universal method to
test the program. This method should build a course schedule containing a list of
courses
offered, the course instructors and the time each course is taught.

Summary

 Object-oriented programming offers many constructs that foster careful code
design and writing. This chapter wrapped up the final two techniques that are available in
Prograph’s implementation of OOP.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

198

• Polymorphism allows the passing of a single message to many types of
objects. Each object will carry out the actions appropriate for their class. The
programmer does not need to keep track of the identity of each of these
objects. this enables the use of objects in lists, such as graphic shapes that can
all be moved, rotated or drawn using uniform messages sent to each item in
the list.

• Rather than store a copy of common information within every object of a

single class as individual instance attributes, class attributes allow the sharing
of a single stored data attribute.

• Class methods may be invoked with three different methods, each with its

own unique syntax: data-determined (/MethodName), in which the object
containing the method to be executed is supplied as an input to the method
call, context-determined (//MethodName), where the calling method and the
called method are in the same class, and explicit (Class/MethodName),
where the class containing the method is stated in the method call.

 In Chapters 9 though 12, we discussed object-oriented programming in great
depth. You as a programmer are under no obligation to use OOP with Prograph. We’ve
already seen that we can write structured procedural programs in Prograph just as easily.
However, OOP allows us to reuse code more than does procedural programming. More
importantly, OOP allows us to understand the class system that comes bundled with
Prograph -- the Prograph Application Builder Classes (ABCs). These classes are the
focus of the upcoming Chapters 14-17, but first, we’ll examine some practical
applications of object-oriented programming outside of the ABCs.

