
Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

1

1. Introduction: Why Do I Need Prograph?

Overview

 Prograph represents an entirely new approach to programming using a visual
graphical representation of program code instead of source code text to build programs
easier and more efficiently. This chapter will introduce the reader to the Prograph
programming language and programming environment, and compare Prograph to
traditional programming languages. Since Prograph is so different from conventional
programming languages, we’ll present a complete example program to demonstrate some
of the revolutionary features of visual programming and Prograph. These features and
more will be discussed in detail in later chapters.

Conventional High-Level Computer Languages

 In the early days of computers, programs had to be painstakingly written as a
series of ones and zeros. To simplify the task of computer programming, textual
computer languages were developed that used words and textual symbols to represent
instructions for the computer to carry out. These textual languages mirrored the text-
based computer environments on which they were used, such as the UNIX command-line
interface or DOS character-based screens. Several so-called “high-level” languages have
emerged in the past few decades, resulting in a veritable “Tower of Babel” of computer
languages -- C, Pascal, Forth, BASIC, Prolog, LISP, Ada, C++, SmallTalk and COBOL
to name but a few.

 With these languages, writing computer programs starts with planning a fixed
order of program instructions. This sequence is sometimes represented as a graphical flow
chart that shows where the program (or a section of it) starts and stops, when data is input
by the user or displayed to the user, the sets of calculations carried out, and the logical
decisions that the computer must make. The flow chart is designed to be easily
understood, so that the programmer can grasp the program’s structure at a glance.

 Unfortunately, after outlining his or her ideas in this easily understood pictorial
format, the programmer must then translate the sequence of instructions captured in the
flow chart to the textual style demanded by a given programming language. Textual
computer languages each have a unique rigid syntax for writing computer instructions,
just as human spoken languages have their own rigid rules for constructing sentences.
What is more important, the product of this program translation -- the textual source code
(a sample of which is shown in Figure 1.1) -- is now harder to understand than is the
graphical flowchart! For example, the reader of the code must examine it carefully to see
which text corresponds to an operation, a variable or a constant, as well as which data is
input to or output from the code.

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

2

 So in writing the program, we’ve progressed from an easily understood graphical
representation of the program (its flowchart) to a less understandable collection of words
and symbols. And to top it off, we’ve spent extra time and effort to do this!!

Let c=a*b

Print "Enter first number:"

Print "Enter second number:"

end

Input a

Print "The product is "

Input b

Print c

start

#include <streams.h>

#include <math.h>

int main()

{

 double a, b;

 cout >> "Enter first number: ";

 cin << a;

 cout >> "Enter second number: ";

 cin << b;

 cout >> "The product is " << a*b << endl;

}

Figure 1.1: Comparison of a flow chart diagram to its equivalent C++
textual source code

 To make things worse, computer languages are even more rigidly structured than
spoken languages. In an English sentence, for example, you could accidentally leave out
a comma or period or forget to capitalize a word, yet the reader would still be able to
understand the meaning of the sentence. If a computer programmer were to forget to
include a special symbol such as a semicolon or accidentally misspelled an instruction’s
name in a line of computer code, the interpreter or compiler “reading” the program would
be much less forgiving. It may either choose not to execute the program at all or might
run it incorrectly, freezing up or crashing the computer.

What is Prograph?

 Programming would be much easier if we could just minimize the need for using
text-based computer language syntax. This is where visual programming, and Prograph
CPX™ in particular, comes in.

 The Prograph programming language is a revolutionary departure from traditional
computer languages that uses little text. Prograph is a visual (graphical) language in
which program operations and elements are represented not as textual symbols but as
pictures or icons (see Figure 1.2), much like the way a graphical user interface represents
disk directories and files with pictures instead of words. It becomes much easier to tell
apart the data from the operations at a glance.

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

3

 Graphical user interfaces tend to make computer users more productive. Likewise,
a graphical programming language makes programming more efficient. Prograph
programs may be built with a minimum of coding -- a program written in Prograph
typically takes about one-third to one-half of the programming time needed to write an
equivalent program in a textual language like C. This makes Prograph an ideal language
for rapid prototyping of applications. This ease of use and efficiency doesn’t sacrifice
execution speed in the completed program. If you need a little extra speed for time-
critical portions of the program, you can add external code written in lower-level
languages like C at compile time.

Figure 1.2: Iconic dataflow programming with pictorial representations of
instructions

 The efficiency of graphical programming has resulted in a number of high-level
iconic programming tools tailored to create specific types of programs for specific types
of tasks. For example, the LabView™ language is specialized for creating scientific and
engineering programs for the laboratory or industrial setting. Unlike these other visual
languages, Prograph CPX was designed first and foremost as a general programming
language to build any kind of program -- graphical, word processing, scientific, business,
musical, multimedia, communications, and so on.

 Prograph, like LabView, is not only visual in nature but is also a dataflow
language. Unlike textual programming languages, in which program control is laid out in
a rigid order, much like people read a book -- from top to bottom -- in dataflow languages
the program is represented as operations interconnected by links through which data
“flows.” In other words, while textual languages are control-driven, or executed in the
order in which instructions are written, Prograph is data-driven,\ -- instructions are
executed when all of their input data is made available. This means that computations and
other operations need not be carried out in a fixed order. For example, in Figure 1.2, the
“*” or multiplication command can execute only when “*” has received the data passed
out of both ask’s output data links towards “*”. On the other hand, the exact order of
execution of the two ask commands themselves is less important, and they may be

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

4

executed in any order (although we have the option of forcing them to operate in a fixed
order if we wish).

 Programming in Prograph means “wiring together” elements that receive and send
data. Data flows into an operation, which acts upon it, then flows out of the operation and
on towards other operations along data links. Which operation executes next depends
upon when each operation’s data is made available to it. The ability to execute operations
in a less order-independent fashion will allow Prograph programs to take full advantage
of technology that will become more prevalent in the near future, such as parallel
processing computers. In Figure 1.2, for example, separate parallel processors could
execute each of the “ask” instructions at the same time, speeding up program execution
even more.

 Prograph was developed in the 1980's by the Gunakara Sun Systems (now
Prograph International) in Halifax, Nova Scotia. The current generation of Prograph --
Prograph CPX -- includes such advanced features as a comprehensive code library that
provides a ready-to-use relational data base and object-oriented user interface/application
framework. But Prograph CPX is more than just a computer language and code library. It
is also an extremely well integrated program development system that includes interacting
graphical program editor, code interpreter, graphical debugger, and graphical user
interface builder. The Prograph programming environment allows you to plan the
computer program, write it, test it, and design its user interface -- all with a single tool.
The debugger is an integral part of the program editor, so programs may be interactively
written and tested piece by piece. You can even add new parts to your programs as you
are running and testing them. After the program has been fully tested, Prograph’s code
compiler will produce a fast stand-alone version of your program.

 Prograph also allows the programmer considerable flexibility in the choice of
programming style. Prograph supports the more traditional structural procedural
programming mode, as well as the newer object-oriented programming style. This book
will teach you how to write programs with Prograph using both programming
philosophies, since both programming styles have their uses for different types of
programs or even different parts of a single program.

Creating Prograph programs

 Let’s dive right in and examine an example program in Prograph so we can see
some of the key features of Prograph. We’ll make a simple address book program that
will maintain a list of contact addresses, allow the addresses to be viewed one at a time,
save the address list to a disk file and print each address. What’s extraordinary about this
program is that we will implement it by writing only 14 routines -- even though the
program includes a full user interface.

 A Prograph program is contained within a project, which is subdivided into one or
more independent modules of code and data called sections. Note that each section in the
Section Window (see Figure 1.3) has three icons. They represent the three components

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

5

of sections -- classes, universal methods and persistents. These three components roughly
correspond to object-oriented programming code, procedural code and global data,
respectively. Sections may be reused as needed in other programs. In fact, our example
program will be composed entirely of sections from the object-oriented Prograph
Application Builder Classes framework that we’ll reuse to manage the program’s user
interface.

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

6

Figure 1.3: Sections window for the Address List program showing
sections of the Application Builder Classes framework

 We’ll add the 14 application-specific routines that we’ll write to one of these
sections -- the one entitled First Example Workspace. This section is made to contain
self-contained units of application-specific user interface code. Specifically, we’ll add
new code to the existing object-oriented code or classes of this section (see Figure 1.4)

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

7

Figure 1.4: Classes of the First Example Workspace section

 The majority of the icons in the First Example Workspace section depict some of
the classes, or packages of code plus data, that have already been supplied with the
Application Builder Classes framework, including the Application, Menu, Document,
Document Data, Window and Standard Menu classes. Each class contains general
code to manage one aspect of a user interface (in conjunction with code within other
sections of the framework); for example, the Menu class manages user mouse selections
of items in each of a program’s menus and enabling/disabling menu items, while the
Window class manages mouse selections within a window, as well as window opening,
closing, activation, drawing, etc. We’ll simply use these pre-existing code modules in our
program to control our program’s user interface for us.

 Four of the classes in this window are special because they contain the
application-specific code for our program. These are the Address Book Application,
Address Document, Addresses and Get Address Window classes. How do we create
these new classes? We don’t -- we let Prograph create them for us.

 One revolutionary feature of Prograph is how well integrated its application
development environment is. The program editor, code interpreter and user interface
design tools all cooperate fully with each other. This degree of integration helps us to
build this program with a minimum of coding.

 Prograph programs are built by first designing the program, then filling in its
details with code. Let’s begin by building the user interface of the program. By selecting
the Edit Application menu item in the Prograph environment, we enter a series of

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

8

graphical application user interface design tools called the Application Builder Editors.
The first of these is the Application Editor (Figure 1.5).

Figure 1.5: The Application Editor

 We’ve given our program the name Address Book. Its four-letter program type
(for the Macintosh computer) is ‘AdBk.’ By selecting one of the three icons on the
bottom of the editor window, we can choose to edit the program’s menus, windows or
documents. Let’s look examine the program menus by opening the Menu Editor (see
Figure 1.6).

Figure 1.6: The Menubar Editor

 At the top of the Menu Editor window is a preview of our program’s menu bar.
We’ve included two menus (besides the standard Apple and Help menus for Macintosh
programs) -- a File menu and an Edit menu. Note that we have the choice of two varieties
of pre-made File and Edit menus. We’ve chosen to use the Document File Menu and the
Basic Edit Menu, shown in Figure 1.7.

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

9

Figure 1.7: The Address Book program menus in the Menu Editor

 By adding these two menus to our user interface, we’ve automatically added their
features to our program. And what features! These two menus implement complex
features such as document file saving and reading, printing and editing functions such as
cut, paste and copy, to name a few. Try programming these features yourself in C, and
you’ll appreciate the benefits of having them done for you by Prograph.

 Let’s look now at the program’s main window, the Get Address Window, where
the individual address records of the address book will be displayed. This window is
designed with the Window Editor. Window controls graphics are selected from a palette
and added to the Get Address Window until it looks like Figure 1.8.

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

10

Figure 1.8: The Window Editor

 The window is composed of several controls, including text editing boxes and
push buttons, as well as text to label the text-editing boxes. Now the window looks the
way we want it to. But we can do more than just make the window look good. We can
also make each of the buttons perform a specific action or behavior that we desire when
the program’s user clicks the button with the mouse. We do this by specifying the “Click
Behavior” of the button (see example in Figure 1.9).

Figure 1.9: The Push Button Click Behavior Editor

 In this case, we tell the push button labeled “Change” that when it’s clicked by the
user, it should execute a routine called “Change Address” whose arguments are the

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

11

window containing the button and the document containing the address to be changed.
We add similar behaviors to each of the other buttons in the Get Address Window -- the
“Delete” button executes a routine to delete the address being displayed, “New Address”
adds a new address, “Previous” displays the previous address in the address book and
“Next” shows the next one. If you look back at Figure 1.7, you’ll see that the Menu editor
allows you to add comparable behaviors to each item in a menu, so that when the user
selects a menu item with the mouse, a particular routine is executed. So far, without
writing a single line of code, we’ve created a user interface of a window and menus to
our program and added the skeleton of most of its functionality by specifying the actions
that the user interface will take when users select the GUI’s controls.

 The last step in defining the user interface is to organize the document itself. You
may have noticed that we haven’t defined yet exactly what a document is, although most
people have a general idea of what one is. A document is any data that we want to display
in a window or change, save in a file and print. Entire applications are centered around
documents -- for example, a word-processing program’s document is the text you’re
writing, and a graphing program’s document is the data to be plotted as well as the plot.
In our case, the document in question is the set of addresses in the address book.

 The document data is stored in a class called Addresses. Once again, classes,
used in object-oriented programming, are collections of both data and the code that
modifies that data. The data of the Addresses class will include the addresses
themselves and other data needed to work with the addresses. The data members of the
Addresses class are shown in Figure 1.10. Each address includes a contact’s first name,
last name, company, street address, city, state and zip code. These aspects of an address
are each given their own individual data member of the class. These data members will
hold the current address to be displayed or printed. But what about all of the other
addresses we want to remember with the address book program? They are stored in an
address list (the first data member shown in Figure 1.10).

 Lists are a built-in data type in the Prograph language. They are therefore
available for use in any Prograph program. In other programming languages, you’d need
to code lists yourself or purchase a code library that implemented lists; in Prograph,
they’re thrown in for free. Each time we define a new address, we’ll just add it to the
address list. When we save a file, we’ll save the entire list. We’ll work with this list
shortly when we look at the code of the Address Book program.

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

12

Figure 1.10: The Addresses class data

 A set of classes make a document work in Prograph by managing the document’s
data and determining the correspondence between the document’s data with the user
interface, printout and file. In other words, relationships are set up between the document
data and the user interface controls that display it in a window, its storage in a file and its
appearance on a printed page. These relationships are called the “mapping” of the
document data. We’ll set up this mapping with the Document Editor (Figure 1.11).
Notice that the editor allows us to define the data of our document -- in this case, the
Addresses class. We then specify that this data will be displayed in the Get Address
Window that we defined earlier. We also set a print layout and file type for the document
data.

Figure 1.11: The Document Editor

 Now that we’ve set which window will display our address data, let’s state
explicitly how the data will be displayed. Here we select the “Edit Mappings” button for
the Window subset of the Document Editor. A Window Mapping Editor will open
(Figure 1.12).

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

13

Figure 1.12: The Window Mapping Editor

 In the Window Mapping editor, we set up a one-to-one correspondence between
the data members of the Addresses class that hold each part of the current address and the
text-editing controls of the Get Address Window that will display (and change) that data.
For example, the data “first name” will be displayed in the text-editing box called “First
Name Edit Text” in that window.

 Isn’t this a bit tedious, setting up these correspondences? Not really -- not when
you consider the alternative. In standard programming languages, displaying data in a
window and changing it means writing code to transfer the data to each control of the
window, managing the text in those controls, then reading that text back into the data
when the window is closed or a given button is pressed. In Prograph, all we do is state
which control displays which data. The rest is done for you without your writing any
code! Any time the document’s data changes, the window display is updated for you
automatically.

 Hardcopy printouts are handled in a similar manner. The Print Layout Editor
(Figure 1.13) lets us design the appearance of a printout of an address, including optional
page headers and footers. The Page Editor, shown in Figure 1.14, is where the physical
arrangement of the data on the page is planned.

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

14

Figure 1.13: The Print Layout Editor

Figure 1.14: The Page Editor

 Just as the address data of the document must be mapped to each control of its
display window, so the data’s correspondence to each field of the printout must be
mapped with the Print Layout Mapping Editor (Figure 1.15). When the user selects Print
from the program’s File menu, the data of the current address is stuffed into each of these
fields and printed out on a page.

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

15

Figure 1.15: The Print Layout Mapping Editor

 Each of the classes and subclasses needed for our application-specific code has
been created for us by the Application Builder Editors, with the exception of the
Addresses class. The editors have also helped us to set up the interrelationships between
these classes. Without writing any code yet, we have the workings of a program that will
display addresses in a window, print them out, and store them in a disk file.

 Now here’s the cool part! Remember all of the behaviors that we set for the push
button controls of the Get Address Window earlier? Each behavior defines what code
will be executed when the button is selected. This code will reside in the Get Address
Window class to help manage that window’s appearance when the code is executed. This
code doesn’t exist yet -- we still have to write it. But we can take a short cut -- we can let
Prograph help us write the code.

 If we execute the Address Book program in its present state with the Prograph
code interpreter, we’ll see that selecting the New item of the program’s File menu will
open the Get Address Window that we designed. If we then click on the Change button of
that window with the mouse, Prograph will try to execute the non-existent Change
Address routine of the Get Address Window class (the behavior we defined for that
button) and we will get the following error message:

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

16

Figure 1.16: Non-existent Method error message with option to create new
method

 This message tells us that we’re trying to execute a non-existent method --
Prograph’s equivalent to BASIC subroutines, C functions or Pascal procedures. But the
interpreter doesn’t just quit or crash at this point. Prograph is much smarter and
programmer-friendly than that. The interpreter gives us the option of letting it
automatically access the program editor to create the method for us. Figure 1.17 shows
the newly created method, already given the correct number of inputs and outputs (the
dots on the bar at the top of the code window denote inputs; the lack of such dots on the
bottom bar signifies that this method currently has no outputs). It’s just this degree of
integration between its development tools -- in this case, the editor and interpreter -- that
makes Prograph so unique. What other language lets you design a user interface, run its
application framework code, then help write whatever code is missing for you?

Figure 1.17: The new Change Address method of the Get Address Window

class

 If we repeat this process for each of the push buttons in the Get Address Window,
we’ll wind up with a series of methods in the Get Address Window class that will help
manage that window’s actions.

 At this point, the program is nearly complete -- very little code has to be written.
All we need to do is add the code that will perform the actions for the Get Address
Window’s push buttons, starting with the Change Address method, shown in Figure
1.18.

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

17

Figure 1.18: The Change Address method of the Get Address Window
class

 Remember that we specified two inputs to the Change Address method when
we defined the behavior of the Change push button (see Figure 1.9) -- the window and
the document involved, that is, the Get Address Window and the Address Document.
This method will in turn invoke other methods to do its work. The graphical nature of the
method’s code makes it easy to understand. The Addresses’ mapped data (the current
address) is changed after extracting the new address from the Get Address Window’s
text-editing boxes. Afterwards, the displayed address is updated, as well as the current
address number, by executing Display Current Address. The only methods we supply
are one named Change Address in the Addresses class and Display Current Address
in the Get Address Window class (the class that “owns” each method is shown by the
first input into each method icon). The Get Data and Extract Data methods are supplied
with the ABC framework.

 How did we know what the Get Data and Extract Data methods do? The Info…
menu item brings up Prograph's on-line help facility (see Figure 1.19), giving us
information about such things as what classes our program contains, what methods and
data are available in each class of the program, what the class and its methods do, what
other classes interact with the class, etc. Each topic is denoted by underlined text. Each
underlined item has a hypertext link to additional information.

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

18

Figure 1.19: The on-line help facility listing for the Get Data method of the

Document class

 The Display Current Address in the Get Address Window class (Figure 1.20)
updates the display of the current address in the Get Address Window. Actually, it
doesn’t do much at all. It just checks if the incoming data to be displayed is in a
Document class or the Address Data class -- if it’s the document, Get Data is called to

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

19

retrieve the data. Then the Install Data stuffs the document data back into the text-editing
boxes of the Get Address Window.

Figure 1.20: The Display Current Address method of the Get Address
Window class

 The icon labeled “Document or Data?” is an example of a local method -- a neat
way of packaging and labeling code within a method that makes the method code easier
to read. If we examine its code, we see that there are two alternative sets of code or cases
that can be executed. Which one gets executed depends upon a logical test, designated by
the icon consisting of a horizontal line with an “X” mark at the end of it. This logical test,
called a match, checks what kind of data is input to the local method, as determined by
the method called “type.” If the incoming data is an Address Document class, case 1 is
executed, and Get Data extracts the document’s Address data. On the other hand, if the
incoming data is an Addresses class, case 2 is executed, and the data of Addresses is
passed through unchanged.

Figure 1.21: The Document or Data? local method

 Look at the icon for the type method in Figure 1.21. It looks different from that
of the other methods. That’s because it is. It’s a primitive -- one of a rich library of
methods supplied with Prograph and available for your use for a wide range of tasks
including mathematics, bit manipulation, string and list handling, database functions, etc.
The kind folks at Prograph International have anticipated what code you’d need to use the

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

20

most and wrote it for you -- what a time-saver! The function of each primitive, what
inputs and outputs each expect, and what type of data each input and output is are all
available to the programmer by way of the on-line help facility.

 The Figure 1.22 shows the Change Address of the Addresses class that does
the actual work of changing an entry in the address list. It calls the Get Current
Record Contents method, which reads the values of the data in the current address (first
name, last name, company, etc.) and stuffs them into a list format using the pack
primitive (see Figure 1.23). This list, containing the data of the current address, is made
to replace one address record in the address list via the set-nth! primitive whose
position in the list is defined by the current address number.

Figure 1.22: The Change Address method of the Addresses class

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

21

Figure 1.23: The Get Current Record Contents method of the Addresses
class

 The New Address method of the Get Address Window class is not very
different (Figure 1.24). It extracts the current contents of the Get Address Window, adds
this data to the address list, then updates the Get Address Window.

Figure 1.24: The New Address method of the Get Address Window class

 What does the Add Address method do? As shown in Figure 1.25, it packs the
current address data into a record list, then appends this onto the end of the address list
using the attach-r primitive. The length of this address list is determined and the
total number of addresses updated to reflect the new number of addresses in the

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

22

address book. The current address number is set to this new address and the current
address data is refreshed for display in the Get Address Window.

Figure 1.25: The Add Address method of the Addresses class

 Delete Address is even simpler (Figure 1.26). Here we just chop out the current
address record from the address list using the detach-nth primitive, then adjust the
address list length and current address, and update the window display.

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

23

Figure 1.26: The Delete Address method of the Addresses class

 Moving from address to address in the address book involves calling the Next
Address and Previous Address methods of the Delete Get Address Window class.
Since they’re so similar, we’ll just show the Next Address method (see Figure 1.27).
The main purpose of this method is to call the Addresses class’ Next Address method,
then update the window.

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

24

Figure 1.27: The Next Address method of the Get Address Window class

 The Next Address methods of the Addresses class, shown in Figure 1.28,
increments the current address number, then checks if its value is beyond the number
of addresses in the address list. If it isn’t, the new current address number is set and
the current address data is updated. If it is, we simply stay at the end of the list.

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

25

Figure 1.28: The Next Address method of the Addresses class

 The last method of our program is shown in Figure 1.29. It is a special
initialization method for the Addresses class. When the class is first used in the
program, this method is automatically called if it exists. In this method, we set starting
values for some of the data in the class. For example, we set the address list to be empty
(the parentheses enclose the contents of the list that we set to be nothing) and the number
of addresses to be 1.

Figure 1.29: The Initialization method of the Addresses class

 That’s all there is to the program. Not much code, is there? Yet this program does
quite a lot! Think of how much C language code you’d have to write to provide the
equivalent address book program. Now think about how many bugs it might have, and
how many hours it would take to edit the code, compile it, run it, find a bug with a
debugger, re-edit the code to fix it, recompile, try it again, etc.

Summary

 This chapter has presented the advantages of the graphical Prograph language
over conventional textual programming languages. The Address Book program was
included in this chapter for a very important reason -- it was the first program written
with the Application Builder Classes framework by one of the authors of this book. And
yet it was written and tested in only one session at the computer. To perform similar
actions in a C program requires a month or two to learn the inner workings of the
computer’s operating system before even starting to code the program, and once started,
the program could still take days or weeks to write and debug!

 The Prograph language and program development environment make all this
possible. With its combination of (a) an easily understood pictorial syntax, (b) graphical
display of code, data, program execution and user interface design, and (c) tight

Visual Programming With Prograph CPX S.B. Steinman & K.G. Carver

26

integration and cooperation of programming tools, Prograph allows for rapid program
development with a minimum of effort and debugging. In the upcoming chapters, we’ll
learn how to apply the strengths of Prograph for a wide range of programming tasks.

