
Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

290

17. Applying the ABCs -- Graphical Display of
Documents

Overview

 So far in this book we’ve presented three complete example programs with user
interfaces. In Chapters 15 and 16, we saw how individual user interface elements could
be pieced together to form a working model of a hand-held electronic calculator. In one
of the Calculator programs, the workings of a hand-held calculator were encapsulated in
just a single Calculator class added to the Application Builder Classes code. Way back
in the first chapter, we saw how easy it was to add a document to a program. In the
address book program presented in that chapter, the ABCs gave us the ability to present
data in textual form in a window, store it in a file or print it out on a page. In both of these
programs, the Application Builder Classes did most of the work for us. This is the way
programming is supposed to be!

 But there’s still one thing that’s not quite right. Our wonderful “graphical user
interfaces” haven’t been completely graphical. In this final chapter on user interfaces, we
will fill in this one remaining gap in our discussion of user interfaces (and unfortunately,
a gap in the Prograph CPX manuals as well) -- presenting graphical information to the
user in a window. Rather than displaying the data of a document as just text, we’ll draw
the data into the window. The program we’ll discuss here will take Prograph full circle --
using a visual language and visual tools to provide a fully visual interface for
applications. Even in this more complicated program, we’ll see how the Application
Builder Classes and Editors remove most of the programming effort.

For More

Information...

In this chapter, we will access fairly generic operating system
drawing routines that should be similar for all platforms that run
Prograph. It is beyond the scope of this book to delve into the
operating system of the computer; in fact, the purpose of this
chapter is to demonstrate how Prograph CPX shields you from
having to call most low-level routines. However, if you do need
to produce more complex graphics, consult the programming
documentation for your computer of choice.

The Graphical Data Plotter Program

 Early computers were hindered by being restricted to displaying only textual
information. When the first graphical user interfaces were introduced, a whole new world
was opened up to both the computer user and computer programmer. Not only could you
describe your data, but you could also draw it on the screen. Now we are going to take
that bold step ourselves and show you how to draw the data stored in a document into a
window and then print it on paper. Most importantly, we think that you’ll be amazed at
how easy Prograph will make this programming exercise -- by taking advantage of the

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

291

Application Builder Classes’ View class, even graphics programming becomes child’s
play!

 Our project is a program that will plot data in a window, complete with plot axes,
axis labels and a plot title. An example document window is shown in Figure 17.1. Here
we’ve plotted some laboratory data, a physiological recording called an
electroretinogram. However, the code of this program could be just as easily be used to
plot other data such as business graphs. Notice that the plot’s X-axis and Y-axis are
automatically given the appropriate range of values to plot the data correctly. All of this
is handled by the Waveform Plotter program’s code.

Figure 17.1: The Data Plotter document window with sample data stored in
the ‘ERG data’ file

 As you might expect, most of the classes used in this program are either already in
the Application Builder Classes or will be created for us by the Application Builder
Editors. Figure 17.2 shows some of the subclasses that will be housed in the Data Plotter
Workspace section (we’ll create this section when we open the ABC Starter Project). All
except the Waveform Data subclass are made for us -- we will have to subclass
Waveform Data by ourselves.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

292

Figure 17.2: The subclasses of the Data Plotter Workspace section

 The program will also use a custom subclass of one of the ABCs to display the
graphical representation of the document data. The View class, a subclass of Window
Item, is one of the ABC’s most general-purpose classes. It is used mostly to contain and
manage other user interface elements. For example, all windows contain a View in which
all of its elements are placed. In addition, Views may contain other Views, which could
be considered to be subviews.

 But there’s another feature of Views that is less obvious. The View class, like
other subclasses of Window Item, can contain graphics. This means that we can draw
whatever we want into a View. Rather than add new drawing actions to the View class
directly, we’ll be adding them to a new Waveform View subclass shortly.

 Let’s dig in and start building the program. Open the ABC Starter Project and
save the new project under the name Data Plotter Project, and the Workspace section as
Data Plotter Workspace. Once again, by including the ABCs in our program, most of the
work needed to manage a user interface has been done for us.

 Add a new section entitled Waveform View to the project. Open the section’s
Classes window and create a new class. Transform this class into an alias to the View
class. Now create a subclass of View and name it Waveform View (see Figure 17.3). At
this point, you may also create the Waveform Data subclass of Document Data in the
Data Plotter Workspace section.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

293

Figure 17.3: The Waveform View subclass in the Waveform View section

 Open the Application Editor and enter the name and signature of the application
as shown in Figure 17.4.

Figure 17.4: Defining the Application with the Application Editor

 The menus for the program, as specified in the Menubar Editor, are shown in
Figure 17.5. We will use the Document File menu supplied as a predefined menu in the
Menu Editor’s list of available menus. No other menus are needed.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

294

Figure 17.5: Defining the menus of the Data Plotter program

 The Document File menu (Figure 17.6) adds a lot of functionality to our program.
It gives the program the ability to create a new document, open a previously-saved
document, save the current document, print the document’s data on paper and exit the
program by selecting a menu item. All of the behaviors of these menu items are already
defined for us -- we now have menus for our program without any effort at all!

Figure 17.6: The Document File menu

 We’ll include only one window in the Waveform Plotter program. This window
will display the plot of our data. But before we can create the window, we need to add the
Waveform View subclass of the class to the View Editor’s View palette, just like we
added new Push Button subclasses to the Controls palette in Chapter 15. Otherwise, we
won’t be able to add our custom Waveform View user interface object directly to the
window.

 First select the Preferences... menu item to open the Preferences dialog box and
uncheck the Hide Interpreter Only check box. This will make the ABE sections of the
ABCs visible in the Sections window. Open the View Editor Preferences class of the
“•Editor Preferences” section. Edit the Floater Contents attribute’s third sublist (the one
with the Views in it) by adding our new Waveform View subclass to its end, as shown in
Figure 17.7. Now the View palette will recognize our new Waveform View type.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

295

Figure 17.7: Edited Floater Contents attribute of the View Editor
Preferences class with new Waveform View subclass added

 We also must tell the View palette to display an icon for the new Waveform
View subclass so that this new type of View that may be dragged into a window’s view.
Open the Floater Picts attribute of the View Editor Preferences class and duplicate the
View’s picture resource number at the end of the third list (for the View palette) for the
new Waveform View as well (see the duplicated number 37 in the third list in Figure
17.8).

Figure 17.8: Floater Picts attribute of the View Editor Preferences class

 The View palette should now contain our new Waveform View subclass and
resemble Figure 17.9. We can now drag a Waveform View from the View palette to the
Waveform window and it will automatically have all of the new actions that we’ll add to
the Waveform View as well as those of a View.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

296

Figure 17.9: Views palette with new Waveform View subclass added

 Now we can create the window that will display our document data. Select the
Create Window menu item and when the window name dialog box appears, give the
window the name Waveform Window, which will also automatically create a Waveform
Window subclass of the Window class (see Figure 17.10).

Figure 17.10: Creating the Waveform Window

 Open the View Editor for the new window and fill it in as shown below in Figure
17.11. Give the window a gray background with the Background Editor. The central large
element of the window is our Waveform View. The majority of the elements of the
window are Text, Edit Text and Push Button objects. Name the Edit Text elements the
following names (as suggested by their labelling text in the window): ‘Graph Title Edit
Text’, ‘X-axis Label Edit Text’, ‘Y-axis Label Edit Text’, ‘X-axis Steps Edit Text’, and
‘X-axis Steps Edit Text’. The Edit Text object below the scrolling list should be named
‘Y-value Edit Text’. The Push Button elements should be named ‘Add To List Button’,
‘Remove From List Button’ and ‘Graph Data Button’. The Graph Data button should also

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

297

be made the default button of the window (the Push Button that’s selected by pressing the
Return key of the keyboard as well as by directly selecting it with the mouse) with the
Default Button menu item of the View menu.

Figure 17.11: Defining the Main View of the Waveform Window

 The central element in the window is a large View object. We’ll discuss this
element in detail soon. Finally, there is a scrolling list element on the left side of the
window. The settings for the Scroll List in the Data Plotter window are shown in the
Scroll List Editor of Figure 17.12. Initially, the Item List of the Scroll List, that is, the list
of members of the list displayed in this user interface element, is empty.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

298

Figure 17.12: Defining the Scroll List of the Waveform Window

 Although we’ve defined several Edit Text text-editing boxes in which users may
type, we have not defined how the user may move from one to the next. The tab key on
the keyboard is usually used to move the cursor from one Edit Text to another,
deactivating the previous Edit Text and activating the next. There is nothing present yet
in our program that determines the order in which the Edit Texts of our window will be
accessed with the tab key. In addition, you should be aware that the tab key also activates
or deactivates the scrolling list. To set the order in which the tab key activates window
items, we select the Show Tab Order menu item to graphically depict and modify the tab
order. Redefine the tab order to look like that of Figure 17.13, where the graph title text-
editing box is accessed first, then the data entry text-editing box under the scroll list, then
the graph label and data point step text-editing boxes in order, and finally the scrolling
list itself.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

299

Figure 17.13: Defining the tab order of Edit Text and Scroll List objects in
the Waveform Window

 Most of the objects in the window don’t need behaviors, but the three Push
Buttons do. Define the Click Behavior of the Add To List button as shown in Figure
17.14. Clicking on this button will call a method named Add Data, which resides in the
Waveform Document class (as revealed by the first input to the method -- The
Document). The second input to the method is Y-values List, the Scroll List object that
will hold the list of data points to be plotted, and the final input is the value currently held
by the Y-value Edit Text, that is, the value of the new data point to be added to the data
point list.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

300

Figure 17.14: The Click Behavior of the Add To List Push Button

 The Click Behavior of the Remove From List button is seen in Figure 17.15.
Clicking on this button will call the Remove Data method, which also resides in the
Waveform Document class. The second input to that method, once again, is the Scroll
List named Y-values List. You may have noticed in the Scroll List editor shown in Figure
17.12 that the Multiple Selection check box was selected. This means that the user will
be able to select multiple data point values in the scrolling list and remove all of them at
once by clicking on the Remove From List button.

Figure 17.15: The Click Behavior of the Remove From List Push Button

 Finally, the Click Behavior of the last button, the Graph Data button, is shown in
Figure 17.16. This is the most important button of the window, since it causes the plot of
the waveform data to graph itself. The button calls a method named Draw in the

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

301

Waveform Document class. The second input of this method is the large View object in
the window, which we’ll name ‘Plot View’. Therefore, you’ll have to wait until we
define this view (see the next two figures) before you set this click behavior.

Figure 17.16: The Click Behavior of the Graph Data Push Button

 It’s time to define the View in which the waveform plot will be graphed. If you
double-click within the rectangular bounds of the View, a Subview Editor dialog will
appear (Figure 17.17). Why is it a subview rather than a view? This is because all
windows by default already contain one view -- the ‘Main View’ of the window. Any
view we add to the window is necessarily a subview of the Main View. This is pointed
out by the title of the Subview Editor dialog -- ‘Subview of ‘Main View’’. The
specifications for this subview are shown in Figure 17.18. The subview is named ‘Plot
View’ and it is both visible and active. The check box labelled ‘Transparent’ in the editor
is left unchecked, meaning that the contents of this subview will be drawn on top of the
underlying Main View and cover up that view rather than let the underlying view show
through.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

302

Figure 17.17: The SubView Editor

Figure 17.18: The View Specs Editor showing the specifications of the ‘Plot
View’ Subview

 At this stage in designing the program, we have a decision to make -- we have
two possible ways in which how the waveform graph display may be defined. The easiest
way would be to draw the graph and its labels directly into the Plot View with graphics
commands supplied by the operating system. This is an acceptable and desirable
approach most of the time, but it has two less obvious shortcomings. First, the
programmer must have intimate knowledge of graphics, font-handling and text-drawing
calls to the operating system for his or her specific computer. Since this book stresses the
platform-independent programming capabilities of Prograph CPX, we will avoid the very
platform-specific font and text rendering calls. Secondly, drawing a line graph of the

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

303

waveform data directly into the subview will restrict our flexibility in how we may
present data.

 We will choose a slightly more complicated means of plotting the data into a
view. Rather than draw directly into the Plot View, we will enclose another subview
within it. This subview will be an instance of the Waveform View class that we created
earlier in this chapter (see the selected rectangular view in the Plot View’s editor dialog
in Figure 17.19). We’ll also place labels for the data plot within the Plot View. Why did
we include this extra level of nested views when we could have drawn directly into the
Plot View? It allows us to present the data in many different ways easily. Every View
object has an attribute named Visible? that determines whether or not the view is
displayed to the user. We could actually place two graphing subviews within the Plot
View -- one Waveforn View subview (a subclass of View) and a second subview based
upon another subclass of View that could present the waveform data in another way, such
as a scatter plot or bar graph. By making one of these graphing subviews invisible and the
other visible, the program could switch back and forth between which graph format it
displayed in the window, yet maintain the correct labels on the graph axes. We could then
let the user select the type of graph display they would prefer to view and print.

 This is an important point since, at present, Prograph CPX is limited to allow only
one display window per document. If we could present several document windows, we
could simply display one window for entering data (for example, into a spreadsheet-like
grid) and separate graph windows for each different way of displaying the data within the
document. This is the way that most commercial data graphing programs work. But since
we are limited to one window alone, we must both enter data and display a graph in the
same window. If we want to display different types of graphs, we must do so within the
confines of this same window. The easiest way to do so is to swap views in and out of the
window by making them visible or invisible.

 While our example program lays the groundwork for multiple graph displays, it
does not actually do so due to page number limitations. We will leave that as an exercise
for the reader.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

304

Figure 17.19: The ‘Plot View’ subview showing the inclusion of its text
labels and an embedded Waveform View subview

 When the graph is presented, we don’t want the graph to have a box drawn around
it, like all Views do by default. Highlight the Plot View, than select the Border... menu
item to enter the Border Editor (Figure 17.20). The default border around a View is a
black border that is one pixel wide.

Figure 17.20: The Border Editor

 Change the border type to ‘None’. This will prevent a border being drawn around
the Waveform View (see Figure 17.21).

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

305

Figure 17.21: The ‘Plot View’ subview showing the inclusion of its text
labels and an embedded Waveform View subview

 The graph title and axis labels are simply Text objects. Name these labels as
follows: Y-axis Label and X-axis Label for the units of the Y- and X-axes, Y Minimum
Label and Y Maximum Label for the numbers on the Y-axis (and the corresponding X
Minimum Label and X Maximum Label for the X-axis), and Data Type Label for the title
of the plot. Name the Waveform View ‘Waveform View’.

 Most of the behind-the-scenes work of the program will be accomplished by the
application’s document. Let’s define that document now. Enter the Documents Editor and
create a new document named Waveform Document (see Figure 17.22). Install that
document type as the Main Document for our application.

Figure 17.22: Creating the Waveform Document

 Complete the specifications for the Waveform Document as shown in Figure
17.23. The document will access the data of the Waveform Data class. It will display its
data in the Data Entry Window, and use the Print Layout class to produce hardcopies of
the data plot. To save the data in a file, we’ll simply store all of the attributes of the
Waveform Data object that we subclassed from Document Data into the document file
with the help of the Object File class.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

306

Figure 17.23: Defining the Waveform Document

 Unlike the document used in the Address Book program of Chapter 1, the current
program does not need any mapping of data to the window or to the printed page. This is
because we are not just outputting text that the Document and Mapping classes can
display for us -- we must draw the data ourselves into the Waveform View. Therefore the
Waveform Document is pretty much complete at this point, except for one thing. The
Print Layout class must still know how to print out the data shown in the Waveform
Window.

 Click on the Edit Layout button in the Document Editor to enter the Print Layout
Editor (Figure 17.24). We’ll name the layout ‘Plot Layout’. Define the Page Type as
“Print View”, and tell it to use the window’s Plot View (selected from the pop-up menu
labelled ‘Use Window’s View:’) as the contents of the Print View. This means that when
we select the Print menu item as the program is executing, the contents of the Plot View,
just as they appear on the screen, will be printed out as hardcopy. The check box labelled
Resize Contents with Page scales the size of the printout to the size of the paper on which
we print.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

307

Figure 17.24: Defining the Waveform Document

 Notice that we will also add a header and a footer to the printout. We use a Print
View to print each of these as well. By clicking on the Edit Header button, the Header
Editor is entered. This editor is much like the View editor, except that it allows the
inclusion of special printing information by means of the Printing palette, shown in
Figure 17.25. This includes the current date and time, as well as the page number of the
printout, especially useful for multipage printouts.

Figure 17.25: The Printing palette

 Place Date and Time objects into the Header View as shown in Figure 17.26.
When our document is printed onto a page, the current date and time will appear on the
top of the page as well.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

308

Figure 17.26: The Header Editor

 Similarly, place a Page Number object into the Footer View (see Figure 17.27) to
have the page number appear on the printed document page.

Figure 17.27: The Footer Editor

Writing the Code for the Data Plotter Program

 Now that the user interface is prepared, it’s time to start coding. The Waveform
Plotter program will require the interaction of five classes that we must write methods for
-- Waveform Document, Waveform Data, Waveform View, Data Entry Window and
List Items Mapping. As their names suggest, Waveform Document and Waveform
Data are responsible for storing and manipulating the data to be plotted, while
Waveform View and Data Entry Window handle the display of that data on-screen. We
will also add a utility class named List Items Mapping that will serve to get a list of data
point values into and out of the scrolling list in the Data Entry window.

 Specifically, the Waveform Data class will contain methods for finding the
range of values that the data points hold, as well as a method for setting new values for
the document data. Waveform Document will contain methods for adding data to the
waveform , removing data, and initiating data plotting. The bulk of the work of this
program will be done by methods of the Waveform View class, which will actually
preparing the labels and plotting scale of the graph -- that is, the correspondence between
a data point’s value and its position within the graph -- and plot the data within the
Waveform View in the Waveform Window or the Print Layout. The Data Entry

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

309

Window class will contain only one method to store new strings in the Text objects that
make up the labels of the plot axes and the plot title.

 The document data class of the ABCs uses specific methods to get and set their
relevant attributes, named Get Value and Set Value. Likewise, the View class contains
the Set Value, Print and Draw methods to set up a drawing, draw graphics into the View
and print the contents of a View. In our Waveform Data and Waveform View
subclasses of these ABC classes, we must overshadow these methods to perform the
specific actions we desire from our waveform graph display and its representation in a
file.

 We’ll start by designing the classes that will hold the document’s data and plot it,
beginning with the Waveform Data class, which we have already subclassed from
Document Data. This class holds not only the actual data to be plotted, but also some
extra attributes for labeling the plot and calculating the upper and lower limits of the plot
for scaling its size into the Waveform View (see Figure 17.28).

 The data attribute is a list of numbers to be plotted. These numbers correspond to
the individual Y-axis values of the data plot. The range, maximum and minimum
attributes are used to scale the limits of the Y-axis of the plot. The following two
attributes, ∆X and ∆Y, determine the units of measurement of the plot -- for example, in
the electroretinogram data to be plotted, each Y-axis unit is 1 microvolt, while each X-
axis unit is 2 milliseconds. Current point is a counter that we use to mark our current
place when we performing calculations that involve the entire data list. The final three
attributes -- Y-axis units, X-axis units and graph title are labels for the Y-axis, X-axis
and the data plot title, respectively.

Figure 17.28: Attributes of the Waveform Data class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

310

 Waveform Data has only six class methods (Figures 17.29-17.35). Its
initialization method (see Figure 17.29) sets the data attribute to an empty list and
current point to 1, and zeros the range, minimum and maximum attributes.

Figure 17.29: Initialization method of the Waveform Data class

 The Find Maximum method (see Figure 17.30) returns the highest value in the
document data found in the list of the data attribute. After setting the current point to 1,
it ensures that maximum is assigned the lowest possible expected value of the data
points. A list multiplex consisting of the Get max local method is then entered, which
resets maximum to the maximum data point value.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

311

Figure 17.30: Find Maximum method of the Waveform Data class

 The actual chore of finding the maximum value is carried out by the Get max
local method (Figure 17.31), which tests each point in turn to see if it’s higher than the
current value of maximum. If not, current point is incremented (so that the next data
point will be worked on during the next iteration through this local method) but
maximum is left unchanged. If the current data point is higher than the previously-set
maximum, maximum is reset to the new data point’s value. After looping through the
entire list, maximum will be set to the highest level of all of the data points.

Figure 17.31: The Get max local method

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

312

 The third class method of the Waveform Data class, Find Minimum, is
essentially the same as Find Maximum except that the value of the minimum attribute is
first set to the highest expected data value (see Figure 17.32).

Figure 17.32: The Find Minimum method of the Waveform Data class

 The final graph scaling method of Waveform Data is Find Range, shown in
Figure 17.33,which calls Find Maximum and Find Minimum, then takes their difference
as the peak-to-peak range of the data to be plotted. The range will be used to scale the
data for the Waveform View.

Figure 17.33: The Find Range method of the Waveform Data class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

313

 The Get Value method of the Document Data class is responsible for retrieving
the contents of the document. In the Document Data class, this method simply returns a
NULL value. This forces you to override the method in your Document Data subclass.
In other words, Document Data is an abstract superclass which must be subclassed to be
used in a program. We override the Get Value method in our Waveform Data subclass
to just pass through the entire Waveform Data object as the contents of the document
(see Figure 17.34).

Figure 17.34: The Get Value method of the Waveform Data class

 We must also override the Set Value method of the Document Data class so
that we may alter the contents of the document. In the Document Data class, this
method is empty. We override the Set Value method to get new values for the document
data from another instance of Waveform Data that is input to the method (that is, a
temporary object), then stuff the values of its attributes into those of the Waveform Data
object that holds the contents of our document (see Figure 17.35).

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

314

Figure 17.35: The Set Value method of the Waveform Data class

 The Waveform Window class will need one method to help it draw the labels of
the axes and the plot title. This method simplifies other methods that we’ll write soon to
set the labels of the plot by placing their common code for setting the string of a Text
object into a single method. The Set Label Text method (see Figure 17.36) accepts an
instance of the Waveform Window, and finds a Window Item (a Text object) whose
name we supply as the second input to the method. The Text object’s text is then reset to
display a new string from the third input of Set Label Text.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

315

Figure 17.36: The Set Label Text method of the Waveform Window class

 To help get and set data point values for the data attribute of the Waveform
Data class, we create a new class named List Items Mapping, stored in a section of the
same name. This subclass of the Window Item Mapping class may seem familiar to you
as a class from the bar chart program in Chapter 11 of the Prograph Tutorial manual. Two
methods of Window Item Mapping are overridden in this subclass so that lists of data
may be retrieved from the document data and written to it. Remember that the data
attribute of Waveform Data contains a list of data point values to be plotted. The Set
Attribute method places the contents of a list into a list attribute, while the Set Window
Item method gets the contents of a list attribute and places them into a Scroll List object
in a window. We will not reproduce these methods here, but refer you to the Prograph
Tutorial manual.

 The Waveform Document class contains just three methods. The first is the
Draw method that is called as the click behavior of the Graph Data button (Figure 17.37).
It calls the Get Data method of the Waveform Document class to retrieve the contents
of the document, then calls the Waveform View class’ Set Value method to draw the
graph. We’ll discuss that method shortly.

Figure 17.37: The Draw method of the Waveform Document class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

316

 The Add Data method (Figure 17.38) gets the contents of the Scroll List that
displays the data point values for the graph and attaches a new data point to it, then calls
Extract Data to place this new data list into the document data itself. The call to the
Make Dirty method of the Document class marks the document as being in need of
saving since its data has been changed.

Figure 17.38: The Add Data method of the Waveform Document class

 Remove Data performs the opposite action (see Figure 17.39). It gets the items
selected by the user in the Scroll List (by calling Get Select List method of Scroll List
to handle multiple selections in its list) and deletes those items from the list. It then calls
Extract Data and Make Dirty as did the Add Data method.

Figure 17.39: The RemoveData method of the Waveform Document class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

317

 We’ve finally arrived at the workhorse of the Data Plotter program -- the
Waveform View class. We add seven new attributes to those inherited from the View
class, shown in Figure 17.40. An instance of the Pen class is placed in the Waveform
View class so that we can change aspects of drawing such as the width of a line being
drawn. The next two attributes, data point H offset and data scale factor, determine
how far to move along the x-axis and y-axis for the next data point in the plot. The plot
Y-maximum and plot Y-minimum attributes determine the highest and lowest values
that can be represented in the plot (rounded off to the nearest 100 units) and are used not
just for scaling the plot, but also for setting the Y-axis numerical labels. Plot X-
maximum sets the x-axis label for the highest x value (the lowest value is always set to
zero in this program). The last attribute, plot V offset, moves the plot downward so that a
zero value in the plot lines up with where the zero point of the y-axis should be.

Figure 17.40: The attributes of the Waveform View class

 The Calculate Scale method (Figure 17.41) determines the plotting scale for the
data plot; that is, the correspondence between the units of the plot’s x-axis and y-axis
versus the horizontal and vertical extents of the Waveform View. It finds the vertical size
of the Frame of the View (its visible extent rather than the area of the view that could be
scrolled) and divides it by the range of the data rounded out to the nearest 100 data units.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

318

Figure 17.41: The Calculate Scale method of the Waveform View class

 The Extend Range to Nearest 100s local method, shown in Figure 17.42, is
responsible for making the plot “prettier”. It ensures that the upper and lower limits for
the y-axis are whole multiples of 100 by rounding up the maximum data value and
rounding down the minimum.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

319

Figure 17.42: The Extend Range to Nearest 100s local method

 Calculate H Offset determines the horizontal spacing of adjacent data points in
the Waveform View (see Figure 17.43). It divides the horizontal extent of the Waveform
View’s frame by the number of data points.

Figure 17.43: The Calculate H Offset method of the Waveform View class

 Calculate V Offset calculates how far to displace the data plot downward in the
Waveform View to get to the data plot’s zero y-value (Figure 17.44). It divides the
vertical extent of the Waveform View’s frame by fraction of the data’s range that is for
positive values.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

320

Figure 17.44: The Calculate V Offset method of the Waveform View class

 Once we’re ready to plot the data in the window, we must scale each plot data
point’s value to fit into the Waveform View. The Scale Data To View method, depicted
in Figure 17.45, does just that. For each point in the plot, it multiplies the value of the
data point by the data scale factor, and offsets its horizontal position in the Waveform
View with the value of data point H offset and its vertical position with the Offset Plot
method. Scale Data To View then moves the horizontal position of the point over by the
data point H offset. The vertical and horizontal position of the current data point is then
stored in point format and output from the method.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

321

Figure 17.45: The Scale Data To View method of the Waveform View class

 Offset Plot simply adds the plot V offset to the vertical position of the current
data plot point (Figure 17.46).

Figure 17.46: The Offset Plot method of the Waveform View class

 What about drawing the plot? Well, this is what we’ve been waiting for! Let’s
start with the utility methods that will be called by the major methods that coordinate the
drawing. These more focused methods will draw specific parts of the waveform graph
display. The Draw Waveform method (see Figure 17.47) is the method that the
Waveform View uses to plot the data in a graph. Draw Waveform first calculates the
scale for the plot, then draws the lines that form the axes of the plot. Next, the Pen object

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

322

is used to change the thickness of the plotting line. The default pen size (line width) is
one pixel. We set it to two pixels wide with the Set Size method of Pen. We then make
the current drawing use the redefined pen with the Pen’s Use class method. The
waveform plot is then drawn via two local methods.

Figure 17.47: The Draw Waveform method of the Waveform View class

 Before we continue with the drawing code, we should mention that the coordinate
system for drawing in the Waveform View is from (0,0) at its top left corner to
(width,height) at its bottom right corner. Unfortunately, the Frame attribute of the
Waveform View class has its origin not at (0,0) relative to the View itself, but at the
position of the top left corner of the Waveform View relative to the window’s
coordinates. So if the Waveform View’s top corner is 20 pixels from the top of the
window and 10 pixels from its left, Frame’s top left corner is at (20,10), not (0,0) as
we’d expect. Therefore, in some of the methods to follow, we must subtract out the
frame’s left position (for horizontal position calculations) or top position (for vertical
position calculations) when drawing in the Waveform View.

 The first of the two local methods of Draw Waveform is Move To First Data
Point, shown in Figure 17.48. It scales the first data point, then moves the drawing “pen”
(the drawing location) to the first point’s location.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

323

Figure 17.48: The Move To First Data Point local method

 The Draw Remainder of Data local method, as its name suggests, draws the points
of the data plot (see Figure 17.49). This method is looped, once for each data point, and
simply draws a line from each data point to the next after scaling the point for the
Waveform View.

Figure 17.49: The Draw Remainder of Data local method

 To make the data plot look like a graph, we draw the axes of the plot into the
waveform View with the Draw Axes method (Figure 17.50). This method calls two local
methods, shown in Figures 17.51-17.52, which draw lines along the left and bottom
edges of the Waveform View.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

324

Figure 17.50: The Draw Axes method of the Waveform View class

Figure 17.51: The draw Y-axis local method

Figure 17.52: The draw X-axis local method

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

325

 The Draw Labels method of the Waveform View class sets the text of the labels
for the data plot. It calls two local methods (see Figure 17.53). The first uses attributes
from the Waveform Data class to set the labels of the x- and y-axes as well as the title of
the plot. The second reads attributes of the Waveform View class to fill in the text
showing the minimum and maximum values for the x- and y-axes.

Figure 17.53: The Draw Labels method of the Waveform View class

 The Set Labels From Document Data local method (Figure 17.54) gets the values
of the data type, y-axis units and x-axis units attributes of Waveform Data then stuffs
them into the appropriate Text objects in the Waveform Window using the Set Label
Text method of the Waveform Window class.

Figure 17.54: The Set Labels From Document Data local method

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

326

 Set Labels From Waveform View Data (Figure 17.55) gets the values of the plot
X-maximum and plot Y-maximum attributes of Waveform View, multiplies them by X
step size and Y step size, respectively, then sets the values of the Text objects in the
Waveform Window that display the minimum and maximum x-axis and y-axis values
using Set Label Text again.

Figure 17.55: The Set Labels From Waveform View Data local method

 Now we are ready to look at the methods that handle the drawing. Remember that
the Draw method of Waveform Document (Figure 17.37) called a class method of the
Waveform View class called Set Value. This method, shown in Figure 17.56, overrides
the Set Value method of the View parent class so that it redraws the labels of the
waveform graph, then sends a request to refresh the contents of the View window item,
which will be done by calling the Waveform View’s Draw method (shown later in
Figure 17.59).

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

327

Figure 17.56: The Set Value method of the Waveform View class

 The Graph Data method, depicted in Figure 17.57, is the method that coordinates
the chore of drawing into the Waveform View. It first checks that data actually arrives
into the method by comparing the input value of the data to NULL. If no data arrives, the
method exits. One thing to note about this method is that sometimes when it’s called, a
Waveform Data object arrives as its second input, but at other times a Waveform
Document object arrives. How does the method handle both of these situations? It calls a
local method named Ensure data that outputs a Waveform Data object regardless of the
method’s input. The data is then passed on to the Calculate Scale method, then the
Draw Waveform method, which do the actual drawing of the waveform graph.

Figure 17.57: The Graph Data method of the Waveform View class

 The Ensure data local method (see Figure 17.58) checks if its input data is a
Waveform Data object by calling the type primitive, which returns the data type of any
variable or constant. If the data is indeed a Waveform Data object, it is passed through
in case 1. If it’s a Waveform Document object instead, the Get Data method is called
in case 2 to extract its Waveform Data object.

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

328

Figure 17.58: The Ensure data local method

 Only two methods remain in the Waveform View class. These methods override
class methods of the View class that handle requests to draw and print the contents of the
Waveform View. They are named, not surprisingly, Draw and Print. The Draw method
(Figure 17.59) calls the superclass’ Draw method using the bounds of the area into which
it must draw as its second input, then gets the window of the Waveform View and the
owner of that window (the Waveform Document). Finally, it calls the Graph Data
method to draw the graph into the Waveform View. The Print method, shown in Figure
17.60, performs nearly the same actions except that it first calls the superclass’ Print
method. This method is called indirectly by the Print Layout class when we select the
Print menu item.

Figure 17.59: The Draw method of the Waveform View class

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

329

Figure 17.60: The Print method of the Waveform View class

 This completes the Data Plotter program! As you look through its code, you can
see that the actual amount of code that does the drawing is still pretty small for a graphics
program. By using existing code in the ABCs, we’ve barely had to program at all. This is
not an insignificant fact -- think about how many lines of code you’d have to write just to
set up a document and a drawing of this kind in a textual language like C or C++.

 This last program of the book was presented to hit you on the head with the one
lesson we hope you’d learn about Prograph. Even the most complicated of programming
tasks become easier and faster to program in Prograph. The combination of integrated
visual tools and a visual language lets you solve any programming problem with very
little programming man-power. It’s about time that programming became not a torture,
but a pleasure. Prograph brings back the fun to programming!

Exercise 17.1:
Create a second subclass of the View class named Bar Graph View. Using code from
chapter 11 of the Prograph Tutorial manual and from the code from the Waveform
View of this chapter, write class methods for the Bar Graph View class that will plot
the waveform data as a bar graph. Create a second subview in the Plot View of the
Waveform Window (a Bar Graph View in this case) that is the same size as and covers
up the Waveform View. Make a Radio Button set for the Waveform Window that will
let the user select which graph type to plot by setting the Visible? attribute of each View
subclass.

Exercise 17.2:

Visual Programming With Prograph CPX S.B.Steinman & K.G.Carver

330

There are many more user interface elements offered by Prograph that we have not
demonstrated since we wanted to keep our discussion focused on realistic complete
programming examples. These other elements are made as easy to use as push buttons
and text-editing boxes by the ABCs and ABEs. In this final exercise, construct a
Catalog program to keep track of a list of hardware products stored in a document. You
should be able to display the individual hardware items in the catalog, add new products
and remove outdated products, and print out information on a product. Two windows
should be presented to the user: In the main Inventory window, which opens when the
program starts, you should place a scrolling list of product names and push buttons for
adding or deleting items from the list, as well as a Quit button. When an item in the
scrolling product list is double-clicked, a second Product window should open for
displaying the products. This window should contain text-editing boxes for the name of
the product, its size and price, a pop-up menu for the type of product (electrical, paint,
lumber, connectors, etc.), a check box for whether or not the item is in stock and a Close
push-button to return you to the main window. Feel free at experiment and add other
GUI elements to the window, such as radio button sets. Have fun exploring the ABCs!

