
Visual Programming With Prograph CPX S.B.Steinman
& K.G.Carver

71

5. Loops

Overview

 Human beings get very bored quickly when they are forced to
repeat a task over and over again. Human beings get very bored
quickly when they are forced to repeat a task over and over again.
(See what we mean?)

 This is one of the reasons why computers are so useful --
they’re very good at carrying out repetitive actions very quickly
without complaining. The process of getting the computer to repeat
the same task, over and over again (until we tell it to stop), is known
as looping or iteration. In this chapter, we’ll be examining two ways
to get the computer to repeat a task using the loop construct and
the repeat construct.

The Loop Construct

 A loop repeats a series of instructions for a user-defined
number of cycles or iterations. The number of times that the loop
repeats itself is usually predetermined and kept track of by a loop
counter. The logic for a loop is shown in Figure 5.1. First, we set the
start value of the loop counter. For this example, we’ll set it to 1.
The loop counter is initialized to this value. Then we set the desired
end value of the loop counter, in this case, 10. This determines how
many times we wish to execute the loop (number of iterations =
counter end value - counter start value + 1, or a total of 10 times in
this example). Within the loop, we execute the instructions we wish
to repeat (the loop contents) once. Following this, the value of the
loop counter is increased by the step size (in this case, 1) to indicate
that the loop has been executed once. The current value of the
counter is compared to the desired counter end value. If the current
value of the counter is less than the desired end value, the loop
contents are executed again and the loop counter checked again,
etc. Once the loop counter value is equal to that of the end value, we
exit the loop.

short counter,
 start = 1,
 end = 10,
 step = 1;

Visual Programming With Prograph CPX S.B.Steinman
& K.G.Carver

72

for (counter = start; counter <= end;
 counter = counter + step) {
 // contents of loop
}

Figure 5.1: Logic for a loop as written in the C++ language

 In Prograph, a loop construct repeats a task until a match test
within the repeated code signals that a given condition required to
end the loop has been met. That is, the loop repeats until a fail,
terminate or finish control has been activated.

 Let’s look at how loops work in Prograph. We’ll start by
creating a simple counting loop. Create a new Counter project,
section and universal method. Now create a second universal
method called Count For Me and complete its code diagram as
shown in Figure 5.2. The +1 primitive (with no space between the
“+” and the “1”) increments the number input to it.

Figure 5.2: Initial code for the Count For Me method

 The Count For Me method contains the loop contents -- the
actions to be carried out during each pass through the loop. In this
example program, the loop contents will simply increment the value
of the loop counter and display its value with a show primitive. It
also contains a match test for whether or not the necessary
conditions to end the loop have been met; that is, if the value of the
loop counter is equal to that of the counter end value, which holds
the number of times we want the loop to execute.

Visual Programming With Prograph CPX S.B.Steinman
& K.G.Carver

73

 By default, the = primitive has an attached control with an X in
it. Remember that this X in the control means “go to the next case
immediately if this test fails.” In other words, this case will be
stopped when the test indicates that the value of the loop counter is
not equal to that of the counter end value. This is the opposite of
what we really want. We want the loop to stop when the value of the
loop counter is equal to counter end -- that is, when the =
primitive’s match test succeeds. We must therefore change the X in
the control to a √. Select the option to do so from the Controls
Menu.

Figure 5.3: Partially-corrected code for the Count For Me method

 There’s still one problem remaining. Notice that the control
attached to the = primitive lacks bars on its top and bottom
symbolizing method input and output bars. This plain control is a
Next Case control. This states that the loop contents method should
continue looping after the match test comparing the value of the
loop counter and the counter end value succeeds. In other words,
the loop will go on executing. We want to prevent the loop from
continuing once this loop’s contents have executed for this iteration.
We use the Finish option in the Controls Menu to change this
control to a Finish control. Now, if the = primitive’s test succeeds,
we’ll finish executing this iteration of this method (Count For Me),
then stop looping.

Visual Programming With Prograph CPX S.B.Steinman
& K.G.Carver

74

Figure 5.4: Completed code for the Count For Me method

 Let’s review what the Count For Me method -- the loop
contents -- does. When it is first called, a starting value and an
ending value for the loop counter are input to the method as
variables. The value of the loop counter is tested to see if it’s equal
to the counter end value. If not, the value of the loop counter is
displayed, then incremented and output from the method. Upon the
next iteration of the loop, the process is repeated, but now the new
(incremented) value of the loop counter will be again tested,
displayed and incremented. If the = match test is successful, the
code within this method would finish executing, but no further
looping would be allowed to occur.

 Now let’s write the Counter method, which will begin the
looping process. Enter the following code diagram. It asks the user
for a starting and ending value for the loop counter, and feeds these
numbers into the Count For Me method. The Count For Me method
has two input nodes for the loop counter and the counter end value,
and one output node for the incremented value of the loop counter.

Visual Programming With Prograph CPX S.B.Steinman
& K.G.Carver

75

Figure 5.5: Initial code for the Counter method

 So far the Count For Me method is doing nothing out of the
ordinary. What is telling it to perform a loop at all? At present,
nothing. We must specifically tell the Count For Me method to loop
itself. Highlight the leftmost root node of the method icon, the one
that feeds the value of counter to Count For Me. Hold down the shift
key and also highlight the terminal node of the method that outputs
the incremented value of counter. Now select the Loop option from
the Controls Menu. The window should now look like Figure 5.6.

Figure 5.6: Calling the Count For Me method in a loop

 The arrows forming a continuous looping path from the input
node to the output node of Count For Me signify that Count For Me
now is being looped. They also denote that the output of the
method -- the incremented value of the loop counter -- is fed back
into the input of Count For Me when it executes the next iteration of
the loop. Now Count For Me will be called over and over again and
the value of the loop counter incremented again and again until the
= test within Count For Me finally succeeds (when the loop counter
equals the counter end value). On each iteration of the loop, the
current value of the loop counter will be displayed by the Count For
Me method’s show primitive.

 The stacked loop symbol with its arrows helps us distinguish
at a glance that this is indeed a loop. In addition, just as the use of
multiple case windows helped make matches understandable,
keeping the contents of a loop in its own individual window makes it
easy to note what part of your code is within the loop.

Visual Programming With Prograph CPX S.B.Steinman
& K.G.Carver

76

By The Way...

Every iteration through this loop will display the
value of the loop counter in a dialog box, which
you’ll have to dismiss by hitting OK or the Return
key. Unless you like doing this over and over, we
suggest that you use values of start and end that
are close to each other to restrict the number of
times the program will loop.

 Note that in this example program, we have a match logical
test within a loop construct. In Prograph, it’s still simple to tell
where one code execution control construct ends and the next
begins via their differently shaped icons and independent code
windows. In textual languages like C++, your sole clue to the end of
one construct and the beginning of another is how well you’ve
indented and commented your source code text.

Warning!

Every so often, when loops are not constructed
properly, or when some action within a loop
contains an error, the loop can go haywire. You
can wind up with what’s called an “endless” or
“infinite” loop -- one that goes on forever without
stopping! If this should happen, hold down the
Command key and press the period key, then hit
Return. Usually, this will abort execution of the
loop, and you can then select Step/Show Off and
Stop Running from the Execution Menu to
continue editing the program.

Exercise 5.1:

Write a program called Square Roots Table which outputs the
numbers from 50 to 40 (backwards), along with their square roots.

Prograph Version of a For...Next Loop

 Let’s do a variation on the loop. In many computer languages
such as BASIC and C, there are built-in looping commands called
For…Next loops. This construct allows you to create loops where the
counter is increased by any step size (not just by 1), like 2 or 3, etc.,
or even decreased by any number upon each cycle of the loop. We’ll
now create the Prograph equivalent of a For…Next loop that counts

Visual Programming With Prograph CPX S.B.Steinman
& K.G.Carver

77

backwards. Our For…Next loop can be reused in future programs
that might need flexible loops.

 Create a new Count Backwards program and section,
containing three universal methods called Count Backwards, Check
Values and For-Next Loop. The Check Values method will make sure
that the starting value for the loop’s counter is higher than the
value of the end value of the counter. If so, these values are passed
through unchanged (see Figure 5.7). If not, their values are swapped
to ensure that the counter starting value is now the larger of the
two, and a message is displayed informing the user that the swap
was made (Figure 5.8).

Figure 5.7: Case 1 of the Check Values method

Figure 5.8: Case 2 of the Check Values method

Visual Programming With Prograph CPX S.B.Steinman
& K.G.Carver

78

 The For-Next Loop method code diagram -- the contents of the
loop -- is shown in Figure 5.9. The value of start, end and step (the
amount that the counter changes on each iteration through the
loop) are inputs to the method. The value of start is decremented by
the value indicated by step using the “-” (negation) primitive. The
new value of start is then checked to see if it’s less than that of end.
If not, the value of start is output and the loop continues to execute.
If so, the For-Next Loop method finishes but cannot be used in the
loop again, so the loop ends.

Figure 5.9: The For-Next Loop method

 All that remains is to write the Count Backwards method that
gets the loop going. Remember, to convert the For-Next Loop
method into a looped method, highlight the For-Next Loop method
icon’s leftmost root node (the start value) and its terminal node,
then select the Loop item from the Controls Menu. The loop will
only affect these two nodes, so it is only the value of start that will
change with each pass through the loop. The values of end and step
always remain the same value that the user enters for them.

Visual Programming With Prograph CPX S.B.Steinman
& K.G.Carver

79

Figure 5.10: The Count Backwards method

Exercise 5.2:
Write a program called Multiplication Table to ask for number,
then display in successive iterations the number times the value of
the loop counter (starting with the counter equal to 0). For
example, if the user inputs a 4, the program will respond with:

(Iteration 1) 0 times 4 equals 0.
(Iteration 2) 1 times 4 equals 4.
(Iteration 3) 2 times 4 equals 8.
… …
(Iteration 11) 10 times 4 equals 40.

Looping an Indefinite Number of Times

 Although loops typically are made to iterate a fixed number of
times, there is nothing that really forces them to be used this way.
Our final example of a loop will demonstrate how to construct a
loop that can execute any number of times depending upon the task
required. We will construct a program to calculate the square root of
a number. Actually, Prograph contains the sqrt primitive to do this
for us. We thought that we’d show you what programmers had to do
when such routines were not written for them by language
developers. We’ll use one particular algorithm for finding square
roots from scratch, using a “trial-and-error” looping technique. To
understand how the program will work, see Figure 5.11.

Number to be square-rooted: 14

Visual Programming With Prograph CPX S.B.Steinman
& K.G.Carver

80

What is done… Root 1 Root 2
Start with 1 and divide the original number 1 14
Average roots, divide this result into the original 7.5 1.867
Continue averaging & dividing into original 4.863 2.879
Note: Average=Root 1, Quotient=Root 2 3.871 3.617
Keep doing this until Root 1 is close to Root 2 3.744 3.739
The programmer decides how close Root 1 is 3.7415 3.7418
 to Root 2 -- CLOSE ENOUGH HERE!

Output the Square Root of 14: 3.742

Figure 5.11: Algorithm for the Square Root program

 The computer can repeat the loop -- averaging, dividing, and
testing whether the two roots are nearly equal -- many times very
quickly. We can arbitrarily choose an extremely small number such
as 0.000001 to be the difference between the two roots required for
the loop to stop. Just how many times the loop executes is
determined by how many times the averaging, dividing and testing
must be carried out before the small difference between the two
roots is reached. There’s no way for us to know this in advance since
it will differ for each number we wish to calculate a square root.

 Create a new program, section and universal method called
Square Root. The Square Root method, shown in Figure 5.12, will
simply call two other methods, Get Number and Output Root, in
turn.

Figure 5.12: The Square Root method

 Create and open the Get Number method by double-clicking
on its method icon in the Square Root code window. This method
(see Figure 5.13) will ask the user to enter a number, then will pass
the number through the abs primitive to ensure that the number is

Visual Programming With Prograph CPX S.B.Steinman
& K.G.Carver

81

positive (just in case the user accidentally enters a negative
number) since the square root of a negative number doesn’t yield a
real number.

Figure 5.13: The Get Number method

 Create a new method called Calculate in the Universal window.
The Calculate method will serve as the loop contents -- the method
that will keep averaging and dividing until its two roots are “equal”
(actually within 0.00001 of each other). Complete this method as
shown in Figure 5.14.

Figure 5.14: The Calculate method (loop contents)

 The Output Root method calls the Calculate method in a loop,
then prints the final output of the Calculate method when the loop
ends. To create the loop, change only the Test Root 1 and Test Root
2 nodes of the method into looping variables. The value of Original

Visual Programming With Prograph CPX S.B.Steinman
& K.G.Carver

82

Number will not be changed. Also note the link between Test Root
2’s loop symbol and the show primitive. Even though Test Root 2’s
output node on the Calculate method icon is involved in a loop, it
still is an output node and can be used as such! When the loop is
exited, the final output value of Test Root 2 is sent from this
terminal node to the show primitive for display to the user.

Figure 5.15: The Output Square Root method

Exercise 5.3:
Write a program called Division which simulates the integer
division and modulus functions without using the ÷÷ (or idiv)
primitives! The program should ask for a dividend and divisor,
then show the quotient and remainder.

The Repeat Construct

 The repeat, like the loop, carries out a task over and over
again until a terminate or finish control has been activated.
However, the repeat and loop are used differently. While a loop
requires that some data value be passed as a counter or some other
indicator of when to end the loop into and out of the method that’s
looping each time it’s executed, the repeat doesn’t have this
requirement.

 The repeat causes a method to be repeated indefinitely until
some particular condition is met. For example, a method could be
repeated until the user responds “No” to the prompt “Do you want
to try again?”. This process is very similar to the Pascal language’s
REPEAT…UNTIL command or C++’s do…while command. We’ll

Visual Programming With Prograph CPX S.B.Steinman
& K.G.Carver

83

construct a program that will use a “Do you want to try again?”
prompt and a repeat construct to perform a repetitive action. In this
program, the repetitive action will be to present multiplication
problems to the user (using random numbers from 0 to 15 as
multipliers) and prompting the user to enter answers until they are
correct. Then the user will be asked if they wish to try again, and if
so, the whole process will repeat.

 Create a new program, section and universal method named
Math Quiz, then complete its code window as shown. The
Instructions method simply displays the message “You’ll be asked to
multiply two numbers. Keep trying until you get it right.”. The Quiz
method is where all of the action really takes place. To make the
Quiz method one which will repeat, highlight its method icon, then
select the Repeat item from the Controls menu. Notice that its icon
changes to one that looks like a stacked set of methods (see Figure
5.16). This stacked icon immediately tells you that the method will
repeat over and over again just like a loop’s stacked icon did.

Figure 5.16: The Math Quiz method with a repeated Quiz method

 Now let’s write the contents of the repeating code contained in
the Quiz method (Figure 5.17). This method will get Generate
Numbers to make the random numbers that will be multiplied, then
calls Ask & Check to present the question to the user and see if
they’re correct. Finally, it asks the user if they wish to do all of this
again. If the user answers “yes”, the repeat is carried out again. If
not, the Quiz method is exited.

Visual Programming With Prograph CPX S.B.Steinman
& K.G.Carver

84

Figure 5.17: The Quiz method with a nested looping method

 The Ask & Check method code is shown in Figure 5.18. It is a
second repeat within the repeating Quiz method. This “loop-within-
a-loop” structure is known as a nested loop. The outer repeat, Quiz,
keeps initiating new questions until the user wants to quit. The
inner repeat, Ask & Check, asks the multiplication question and
keeps checking the user’s answer to see if it’s correct. If not, it
continues asking the same question until a correct answer is given.

Figure 5.18: The Ask & Check method

 The Generate Numbers method (Figure 5.19) simply generates
two random numbers between 0 and 15, which will be used as the
multipliers in the multiplication problems presented to the user.

Visual Programming With Prograph CPX S.B.Steinman
& K.G.Carver

85

The rand primitive generates an integer number between 0 and 231
- 1. This number is an integer, which we’ll divide by 15 with the ÷÷
integer division primitive to get a quotient (unused here) and a
remainder between 0 and 15 -- our random number. Note that the
second output node for the remainder on the ÷÷ primitive is not
present by default. It is an optional node that we have to add to the
primitive icon.

Figure 5.19: The Generate Numbers method

Exercise 5.4:
Modify the Math Quiz program to make a new program called
Square Root Quiz. The program should instruct the user to enter a
number whose square root will be calculated. The program should
keep asking for numbers and displaying their square roots until a
negative number is entered. At that point, the message “Cannot
square root a negative number!” should be displayed, and the
program ended.

Summary

 In this chapter, we introduced two Prograph constructs for
executing repetitive blocks of code:

• The loop construct is used to execute a block of code a
specific number of times. It usually serves as the Prograph
equivalent of a low-level for-next loop. We have provided
code examples that extend the utility of the loop so that it
provides all of the general functions of a for-next loop.

Visual Programming With Prograph CPX S.B.Steinman
& K.G.Carver

86

• The repeat construct simply executes a block of code over
and over again until a specific condition is met. Its
equivalent in other programming languages is the while or
do-while loop.

• Loops, repeats and matches can be nested within each other

to form more complex constructs. Unlike in textual source
code, in Prograph it’s simple to see where one construct
ends and the next begins.

