
Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

23

2. Elements of a Prograph Program

Overview

 We have already demonstrated some of the elements that make up Prograph
dataflow code diagrams and programs. Before we examine Prograph programming in
detail in the upcoming chapters, it would be helpful to discuss the basic building blocks
of a Prograph program, and relate them to programming constructs in a more
conventional programming language, in this case, the C or C++ programming language.
It is not necessary for the user to be fluent in the C or C++ language to learn the
Prograph programming language; we simply provide examples of similar constructs in
these popular languages so that experienced programmers who are switching from
conventional textual languages will have a point of reference. We’ll discuss the data
elements and code constructs of Prograph, as well as the data storage formats for
Prograph data. By the end of this chapter, the reader should have some ideas about how
and when to apply these elements in building programs.

 There are two major types of program elements or components that are pieced
together to construct a Prograph program -- data and operations. Let’s examine
operations first.

Operations

 Operations are the basic steps taken by a Prograph program. An operation that has
been created by you in a code window, but has not yet been defined as a specific type of
operation is called a “plain” operation. This generic operation serves as a “place holder”
in your program until you define what type of operation it should be.

Figure 2.1: An as yet untyped or “plain” Prograph operation

Operations and Methods

 Methods are operations that form the fundamental building blocks of a Prograph
program. They are modules or packets of instruction code that can be reused in several
places in a program. Methods are much like C++ functions, but represented in a graphical
chart-like manner rather than as text. However, unlike flowcharts, in Prograph the flow is
not of one instruction to the next, but rather a flow of data from one program step to
another. In other words, the program execution order is determined not by what
instruction was written next, but whether or not data has arrived at that step.

 Operations are used to “call” a Prograph method; that is, to tell a method to
execute itself. When you first create an operation (a method call), it appears as the

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

24

“plain” Prograph operation shown above in Figure 2.1 until you give it a name. After you
type in its name, the Prograph editor checks that name against its database of existing
methods in your program, whether they’ve been supplied as part of the Prograph
environment or designed by you. If it finds an existing method whose name matches the
name you’ve given the newly created plain operation, it converts the plain operation icon
into an operation icon that is characteristic of the type of method that it calls, giving you
immediate visual feedback of what the operation does. The operation icon is also
provided with the proper number and type of inputs and outputs for the method it will
call. In textual programming languages like C++, all you’d see in the source code is a
name or label, which could reflect any type of code or data -- function, variable or
constant. It would be up to you as the C++ programmer to remember what that label
meant -- whether it represents code or data -- as well as what inputs and outputs, if any,
such code expected. If you didn’t remember correctly, you’d get a program compilation
or execution error. Prograph, with its visual feedback and method lookup system, helps to
keep you from making these potential mistakes.

Warning!

As in the C++ programming language, names of operations and
data elements are case-sensitive! That is, the name “My
Method” is not interpreted by Prograph to be the same as “my
method” or “My method.” Be very careful with punctuation to
exactly match the name of an operation, method or data element
you are accessing again.

 Prograph programs are typically composed of several operations or method calls
nested within other methods linked together to form a larger, more complex dataflow
chart. While this is also true of other languages like C++, there is one less obvious
advantage of Prograph’s linked method modules. In C++, you are forced to build a large
part, if not all, of a program before you can execute the program to see if any one method
works correctly. In Prograph, methods are independent modules that may actually be
executed by themselves. This makes it much easier to debug a Prograph program, since
you can run and debug it piece by piece, noting if each method works correctly in
isolation before checking its integration into the entire program.

 Methods contain three basic parts: an input bar, an output bar, and the operations
the method will carry out (see Figure 2.2). When a method is first created, its code
window is empty except for the two bars at the top and bottom of the window. The input
bar at the top of the method’s window denotes the start of the method, and the output bar
at its bottom denotes its end. At this point, we can add operations to our method, but we
can’t send data to the function or get data back from it. This is what the two bars are
really for. If we create a node (that small dot in the figure) on the top bar, we’ve told the
method to expect one piece of input data. Likewise, we can create nodes on the bottom
output bar, we’ve signaled the method to provide one piece of output data when it
finishes executing that will most likely be sent to another operation. This clearly labels
the inputs and outputs of the method.

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

25

 Data flows into a method through the nodes on its input bar, then flows one by
one through operatons within the code diagram that either examine or modify that data,
then finally flows out of the method by nodes on the output bar. Programming entails
defining and “wiring” the paths of the data flow -- nodes, datalinks and operations.

OutputType
AMethod(InputType inputValue)
{
 OutputType outputValue;

 // Operations carried
 // out here

 return(outputValue);
}

Figure 2.2: The components of a Prograph method compared to those of a

C++ function

 The visual representation of the method’s inputs and outputs serves another
function. Once we define the number and types of inputs and outputs for the method, this
information is added to the Prograph environment’s table of existing methods. If we try
to call this method in another place in our program, the correct number of inputs and
outputs will be attached to the called method’s operation icon for you.

 There are several types of methods in Prograph. Each type has a different
operation icon type to help you easily differentiate them. The most basic type of method
is the universal method. This is a general method that can be used anywhere in a
program. Universal methods are not associated exclusively with object-oriented
programming (these so-called “class methods” will be discussed in Chapters 8-11). Calls
to universal methods appear in our code diagrams as a plain box symbol containing the
name of the method to be executed. The universal method named Method 2, shown in
Figure 2.3, expects no inputs or outputs, so it has no root or terminal nodes. It contains
one operation -- a call to another method named Method, which expects no inputs and
provides no outputs.

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

26

void
Method2(void)
{
 Method();
}

Figure 2.3: A Universal method with no inputs or outputs (itself calling a

second method with no inputs or outputs), shown with its C++ equivalent

 A second type of method is the primitive method or primitive for short. Primitives
are just like universal methods, but they have been written for us by the folks at Prograph
International. A library of pre-written methods called primitives are packaged with
Prograph CPX. Some primitives serve a similar purpose as the proposed ANSI standard
C++ library, but the primitives also include machine-specific methods and methods that
simplify complex tasks that would otherwise require calls to the computer’s operating
system.

 To differentiate a call to a primitive from a call to a universal method, a
primitive’s operation icon is a box with a single horizontal line added along its bottom
edge. The shape of the icon gives you immediate recognition of whether the operation
represents code, data or a combination of the two (class). All methods or code (whether
written by the user or provided with Prograph) have a rectangular box for their operation
icon. The details of a method’s box-shaped operation icon, such as the presence of a line
running parallel to its bottom, helps differentiate the subtype of method the operation
calls (universal method, primitive, etc.).

 Primitives have names that tend to begin with lower case letters. In Figure 2.4, we
see a primitive called show, which displays text in a dialog box. It’s similar in function
to the C++ printf or stream output functions.

printf(...);
 or
cout << ... ;

Figure 2.4: A primitive method call and its C++ equivalent

 You can also see in Figure 2.4 that there is a dot or node on the top of the show
primitive’s icon. The node represents a route for data to flow into the method called by
the operation, in this case the text to be displayed by the show primitive.

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

27

 Prograph allows you to access routines written in other programming languages
as external methods. These look like icons that call universal methods in a code window,
except that they have two horizontal lines -- one at the top and one at the bottom of the
operator icon. For example, the icon in Figure 2.5 calls the Macintosh operating system
routine SetPt, a routine written in the Pascal language that sets the screen coordinates
of a point to be moved to or drawn on the screen of a Macintosh computer. Similar
external routines are provided in the Windows version of Prograph.

 External code can also be written to optimize the execution speed of time-critical
portions of a program. For example, if you really need to squeeze every last bit of speed
from a given Prograph method you’ve written, you have the option of rewriting it in the
C language and linking it into your Prograph program with the optional Prograph C Tools
kit from Prograph International.

Figure 2.5: An external method call that accesses the SetPt Macintosh
Toolbox routine written in the Pascal language

 The last type of method we’ll mention for now is the local method. Its operator
icon is a box with vertical lines on the left and right sides. These are used solely for the
purpose of making our program code more legible. Let’s create one to show what it is.
Figure 2.6 shows a method called Multiply Numbers. There's a lot going on in this
method, isn’t there?

Figure 2.6: A crowded method case window

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

28

 Let’s clean up the Multiply Numbers method window a bit. First, we select the
two ask primitive icons, along with their text constant inputs. Then we select the Opers
To Local menu item. All of the selected operation icons are now replaced with a single
icon. We’ll name this icon Get Two Numbers. The simplified Multiply Numbers method
is shown in Figure 2.7. The Multiply Numbers case window is now much simpler to
understand at a glance.

Figure 2.7: Creation of a local method to simplify method code

 What happened to the ask primitives? These operations are still present, but
we’ve neatly stored them away, out of view, to make our Multiply Numbers case window
neater and simpler. If you double-click the Get Two Numbers operator icon on one of its
click spots, another case window (see Figure 2.8) will open that contains the “missing”
commands. All we’ve done is group together these operations and enclose them within a
separate local method. The term “local” implies that this code is “seen” only by the
Multiply Numbers method that contains it. The Get Two Numbers local method can’t be
called by any other method in our program.

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

29

Figure 2.8: Contents of the local method

 Notice that the Get Two Numbers local method’s icon in Figure 2.7 has no input
nodes (terminals), but does have two output nodes (roots). This is because the two ask
primitives each output a number that the local method will have to output as well (see
Figure 2.8). The local method is automatically given the proper number of inputs and
outputs. Once again, Prograph takes care of the mundane tasks of programming for us --
we don’t have to keep track of details like these.

 Information hiding with local methods is a Prograph feature that is not found in
languages like C++. In C++, the only option you have for “hiding” code is to make a new
function to contain it. When calling this new function, your program will still incur the
overhead of a function call (unless it an extremely short “inline” function, which is
executed without function-calling code). An equivalent Prograph local method carries no
function call overhead since it isn’t really a method, but a convenience to make the
program code more understandable by labeling groups of operations with their purpose.

Built-In Methods -- The Prograph Primitive Set

 Before discussing other elements of Prograph programs, let’s take a quick peek at
the collection of primitives that have been packaged with Prograph. The Prograph
primitives carry out a wide range of functions that we’ll use frequently. In fact, it is
extremely difficult to write a Prograph program without using primitives. Some of the
primitives execute simple functions, but others are fairly complicated, such as the file
read/write primitives, directory primitives, memory primitives and graphics primitives.
The primitives therefore save us a lot of programming effort and shield us from having to
make some operating system calls. Consult the Prograph Reference manual for a
complete description of each primitive.

 A subset of the Prograph primitives serve the function of basic C++ language
operators. For example, there are mathematical primitives like the * or multiplication

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

30

operator, and the + or addition primitive. In C++, these operations are built into the
language syntax. The mathematical primitives build them into the Prograph language.
Similarly, logical primitives perform tests on data such as whether the data value is
greater than or less than a particular value. They also test logical states -- whether
something is true or false -- or whether more than one condition at a time is true or false.
Other Prograph primitives perform tasks included in the proposed ANSI Standard C++
library -- functions that are not built into the C++ language but tend to be supplied with
C++ compilers anyway. An example is the wide range of trigonometric operations such
as sine, cosine, and tangent. Other examples are rounding-out and truncating operations,
random number generation, and even some financial functions not found in C++.

 Perhaps the most important primitives are those used for getting data in and out of
the program. We’ve already used two of them -- show and ask. These primitives take
the place of the C++ language’s cout and cin stream I/O functions, which output and
input text or numbers, respectively. Like their C++ equivalents, they are “smart”
methods, which can handle a wide range of input data types and print them correctly.

 The string primitives are used to manipulate text strings. They allow you to find
substrings within a string, join strings together, and convert characters from string data to
the values of the ASCII numbers that represent them. In C, most of these functions are
served by low-level character manipulation functions. To get the ease of use that the
Prograph string primitives offer, you’d have to buy additional string libraries or write
them yourself.

 Prograph also provides built-in data types that are not a part of other languages,
such as lists. A rich set of list primitives is provided for convenience in using lists. In
C++, lists must be created as a new data type. Several intermediate and advanced books
on C++ programming provide code for list processing as an example of a programming
task beyond the capabilities of a beginning programmer. Not so in Prograph.

 Most of the remaining primitives serve to augment the Application Builder Class
library that is supplied with Prograph CPX to manage the user interface of your
completed application program (we’ll discuss them in Chapters 13-15).

 One important feature of the Prograph primitives is that many of them are
polymorphic -- that is, they can accept a wide range of input data types. Languages such
as C force you to input a particular data type and only that data type into a function. The
C++ language, allowing you to make polymorphic functions via function overloading,
saddles the programmer with the chore of setting this up. Prograph, on the other hand, is
much more forgiving and avoids more scenarios where errors could occur. Primitives
allow you to input different data types without “choking.”

Decision-Making with Matches, Controls and Cases

 Some of the Prograph primitives give you ways to perform decision-making tasks,
such as the logical operations, or the input-output primitives such as answer, which

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

31

gives different outputs depending upon a button selected by the user. As part of the
Prograph language, there also exist several operations called matches that perform
different actions depending upon if a particular condition is true or false. Matches are
equivalent to the if-then or case statements of C++. For example, this match checks if the
data value it receives on its root node is equal to zero:

Figure 2.9: A “match” logical test

 Exactly what is done following the match depends upon the type of control
present on the right side of the match icon. In the above match, the “X” means “do
something else if the test FAILS.” If the test succeeds, the remaining code in this code
window continues to execute. If the test has failed, we must provide the “something else”
-- the other code -- to be executed.

 How do we provide the other code? In Prograph, the window in which dataflow
code is contained is called a case window. Now we’ll see why. A case is a section of code
that is executed when a test has been made. All methods by default have one case
window -- even if no match tests are made in the method, the code in this case window is
executed.

 If a match test is made, other case windows must be provided to handle all of the
possible outcomes of the match. In the case of our above match, we need two case
windows -- one with code to execute if the test succeeds and one to execute if it fails (see
Figure 2.10). In Prograph, the two alternative courses of program flow resulting from the
match test are easily distinguished visually because they are housed within two individual
dataflow windows. In textual languages like C++, the only thing that distinguishes two
alternative program flows are two blocks of text following the “if” statement. As these
blocks get bigger, their interrelationship gets even harder to determine.

void
AMethod(short num)
{
 if (num != 0) {
 // Execute case 2

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

32

 }
 else {
 // Execute case 1
 }
}

Figure 2.10: Case windows for method containing a match and their C++

language equivalent

 Notice the numbers in the titles of the two case windows preceding the method
name. The second number, following the colon, indicates how many case windows this
method has. The first number, preceding the colon, denotes the number of this case
window. Our match will continue to execute the code in the default method case window
(case window 1 out of 2) if the test succeeds, and will execute the code in the method's
other case window (case window 2 out of 2) if the test fails. In this example, the program
will execute different sections of code depending upon if the number input into the
method is equal to zero or not.

 As hinted above, it is the particular control attached to the match icon that
indicates what is done next. We can test for either success or failure of a test -- that is,
whether the outcome of the match is true or false. We can either execute new code
following the test, continue executing the present code, execute a section of code and
then stop, or even exit the section of code immediately. We’ll discuss matches in more
detail in Chapter 4, when we look at logical tests and program flow control, as well as
Chapter 5, which covers loops.

Calculations with Evaluations

 Last, but not least, is an operation that is very handy for carrying out small
calculations when you don’t want to write a completely new method to do so. This
element is the evaluation. It is a small method-like symbol. However, unlike methods, it
does not have its own code window. Its sole purpose is to hold a single mathematical
equation to be evaluated. The example below, taken from the Prograph Reference
manual, shows the first step of the calculation needed to solve a quadratic equation. It
takes three inputs numbers at its three root nodes -- a, b and c -- and calculates the value
b2-4ac, which it returns as output from its terminal node.

 A C++ language analog of a Prograph evaluation could be accomplished in one of
two ways: either you could write a new function, incurring the cost of a function call, or
you could implement the equation as a macro or inline function definition (see Figure
2.11). In either case, the function code is defined elsewhere in the program. The
difference in Prograph is that the evaluation gives you a visual indication of what
calculation the code is doing right there where it’s used.

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

33

#define Quadratic(a,b,c) ((b*b)-(4*a*c))
 or
inline double
Quadratic(double a,double b,double c)
{
 return((b*b)-(4*a*c));
}

Figure 2.11: Calculation with a Prograph evaluation shown with its C++

language analog

 Evaluations may take up to 26 inputs, one for each letter of the alphabet. Each
one is named sequentially by each letter of the alphabet in turn. While this worked out
nicely for our variables a, b and c, which happen to be the first three letters of the
alphabet, it can be a problem if you want to name the variables x or y in the evaluation's
equation -- for example, if you wanted to calculate x2+y2 to match the symbols used in an
equation that you use regularly. To use the names x and y in the evaluation, you’d have to
add 25 root nodes to the evaluation and enter the numbers in the two rightmost nodes.
This would be very confusing. We suggest instead that you still use the variable names a
or b in the evaluation equation, then comment the evaluation to show that x is equivalent
to a, and y is equivalent to b.

Data Types - Constants, Variables and Persistents

 Data in a Prograph program comes in three forms -- constants, variables and
persistents. Each is used for different purposes, and each may hold one of several types
of data values.

 Constants -- data types whose values do not ever change -- are depicted as a
horizontal line and terminal node with the constant’s value above it. Constants may
contain several types of data such as numbers, text or lists of items.

 const float fNumber = 45.0;

Figure 2.12: Prograph constant and its C++ language equivalent

 Constants are used most in Prograph for data that is immediately fed into a
primitive. For example, when we want to display a particular fixed text message with the
show primitive, we can provide a text constant to it, as shown in Figure 2.13. In this
case, we pass the message “Print this.” to be printed immediately by the show primitive,
but we do not need to store it for later use. Once the constant is used by show, it can be
removed from memory.

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

34

cout << “Print this.”
<< “\n”;

Figure 2.13: Using a Prograph constant and a C constant

 Variables of course are data types whose value can change. For example, when
we enter a single number along a datalink from one operation into another, for example, a
“-” primitive, we are supplying a variable to the “-” primitive whose value will be
negated and returned to us for reuse. As another example, the not primitive changes a
data value of a Boolean (true/false) variable from “False” to “True,” and vice-versa.
Unlike in the C++ programming language, where variables must be declared and named,
most variables are not given an iconic symbol in Prograph. They are simply passed along
datalinks as “anonymous” data without their own label or symbol. There are two
exceptions to this rule -- persistents, which we’ll discuss now, and objects, which we’ll
spend a good number of pages discussing later in the book -- which are forms of named
variables.

 The typical variable exists only for the life of your program -- when your program
is running. After you exit the program, the memory storage used to hold the value of a
variable is freed up again, and its data value is lost. The next time you run the program,
the variable must be given a value all over again. But there are times when you might
want to store the last value of a variable and retain it for the next time you run the
program.

 This can actually be done with Prograph. A special data type called a persistent
holds data while you run your program, then saves the value to disk storage when the
program exits. When you start the program again later, the value of the persistent is reset
to its former value by reading it from disk. Within the program, the persistent is used just
like a global variable would be in other computer languages -- it can be accessed at any
point in the program. A similar mechanism is just now starting to be provided by some
C++ language libraries that implement what is called persistent objects. These are simply
C++ data types that are stored to disk after program execution for later recall. However,
the C++ programming language itself does not provide such a construct.

 Prograph programs are made up of individual sections, which are program
modules saved in individual files. Each section is composed of three components --
classes, methods and persistents, depicted in the three-faced symbol for a section. You
create or examine pre-existing persistents by selecting the persistent face of a given
section’s icon (Figure 2.14).

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

35

Figure 2.14: Opening the Persistents window

 This action opens the section’s Persistents window (see Figure 2.15).

Figure 2.15: The Persistents window

 To set the type of data the persistent will hold, bring up the persistent’s Value of
Persistent dialog, seen in Figure 2.16.

Figure 2.16: The Value of Persistent dialog

 Select the persistent’s data type from the Type pop-up menu in the dialog box. A
default value of the persistent will appear in the bottom area of the dialog. You may
change this value to any value that's acceptable for that particular data type. For example,
as seen in Figure 2.17, if the data type is real, you can type in any floating-point number
for the value of the persistent.

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

36

Figure 2.17: Setting the value of a persistent

 Accessing the persistent’s value from within a code window first involves
creating a persistent icon in the window. Creating a persistent icon is similar to creating a
method icon, but with one additional step. After you make and name a blank operation,
highlight it and select the Persistent item from the Opers Menu. This will transform the
blank operation into a persistent.

Figure 2.18: A persistent in a case window

 The persistent icon has a characteristic shape -- an oval -- but it lacks any nodes.
To feed a data value into the persistent or read a value back out of it, we must add our
own nodes to it. To write data to a persistent, we create a terminal node on the top of the
persistent; to read data from a persistent, we create a root node below its icon.

 To read the value of the persistent, create a terminal node on its icon’s bottom,
then form a datalink from this node to the method to which you want to feed its data. In
Figure 2.19, we display the value of Some Persistent by feeding its value, output from a
root node, to the show primitive.

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

37

Figure 2.19: Reading the value of a persistent

 Changing a persistent’s value is done by adding a terminal node to the persistent's
top, then connecting a constant or method output (variable or constant) to the root node of
the persistent to feed a data value into it. In Figure 2.20, we initialize the value of Some
Persistent to 24.

Figure 2.20: Writing a value to a persistent

Data Formats

 Now let's examine the types of data values that constants, variables and
persistents may hold, as well as the special uses for each.

Boolean

 A Boolean is a special data type that can only hold the values TRUE or FALSE.
Boolean data types are useful for holding program settings such as “Should my program
use color?” (a yes/no value) in a variable we may change, read, test with logical decision-
making operations. Boolean operators are not a built-in operator in the C++ programming
language, but are so easily constructed that they are usually defined in C++ library files
as enumerated data types where 0 denotes false and 1 denotes true.

Real

 A real (short for real number) is a floating-point number, equivalent to the C++
IEEE-standard double-precision float (or double), which may be expressed either as a
decimal number (e.g., 645,383.21) or in scientific notation (e.g., 6.4538321E5, which is
equal to 6.4538321 x 105). A real’s value may be any number in the range from -
1.1E4932 to +1.1E4932.

Integer

 In Prograph, an integer is a 32-bit signed integer number (a C++ long integer)
whose value may range from -2,147,483,648 to +2,147,483,647. The real data type is
Prograph’s default numerical type, and can contain values that are much larger than this

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

38

range, so why would you need to use integers at all? Integers are useful because they may
be manipulated much faster than floating-point numbers. When you don’t need the
decimal precision of a real number, an integer is preferable to use. In addition, many
operating system routines expect integer rather than floating-point numbers as inputs or
outputs.

External

 This data type is used to represent several varieties of data types not directly
supported by Prograph. Data of this type include C or C++ language structures or Pascal
records that may be passed to operating system routines. External data types access data
defined in external C or Pascal code written with the optional Prograph C Tools or
Prograph Pascal Tools available from Prograph International.

String

 Strings are collections of printable characters that may contain up to 65,535
characters each. Strings are built-in data types in Prograph. The C++ language does not
support strings directly, but rather implements them as an array of individual characters.
While the proposed ANSI Standard C++ library supplies some functions for manipulating
strings, this is usually left up to the programmer.

List

 Lists are special collections of other data types, such as a group of numbers or a
group of strings. In fact, you may even collect lists of lists. Lists are somewhat similar to
C++ arrays, but not quite -- in fact, there is no true equivalent of an array in Prograph.
For example, lists, unlike arrays, do not have to be homogeneous; that is, a single list can
hold several types of data. Since lists are so powerful, we’ll cover lists in detail as a
separate topic in Chapter 6. Lists are not directly supported by C++, but are a built-in
data type in Prograph.

Null

 This is a special data type used by Prograph that holds no value at all. It is, in
effect, simply a place-holder for Prograph. Its C++ counterpart is NULL, defined as 0 or
a void pointer, depending upon the compiler used.

None

 This data type is somewhat like a Null, but rather than simply saying that the data
has no value, None is used by Prograph to indicate that no data at all exists along this
datalink. Therefore, you can’t save None in a list like you could with a Null.

Classes

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

39

 The final piece of the puzzle is provided by classes, which integrate data, and the
code that manipulates the data, into a single programming element that can then be used
by the programmer as if it were a built-in data type. The integration of code and data in
classes can be seen in a class’ two-part icon.

 Classes are a way to build a library of new data types that can be reused in all of
your programs (Prograph’s Application Builder Classes are an example of such a library).
Special properties of classes make them more powerful than just methods or data alone --
so much so that an entire mode of programming, object-oriented programming (OOP),
has been developed based upon classes. We’ll start working with Prograph classes in
Chapter 10.

Figure 2.21: A Class -- The basis of object-oriented programming

Visual Programming With Prograph CPX S.B.Steinman & K.G Carver

40

SUMMARY OF MAJOR PROGRAPH PROGRAMMING OPERATIONS

 Universal method operation Operation that calls your methods

 Prograph primitive Built-in Prograph method

External method System ROM method or method

written in another language

Local method Local method

Match Logical test

Evaluation Calculation

SUMMARY OF PROGRAPH DATA TYPES

 Constant Constant (unchanging) data

 Persistent Permanent data storage

Class User-defined data type for object-
oriented programming

SUMMARY OF METHOD INPUT AND OUTPUT

 Terminal node Method input

 Root node Method output

