
User Guide
Revision 1.1
Dec. 29, 2005

2

Andescotia and the Marten logo are trademarks of Andescotia LLC.

Marten is a trademark of Andescotia LLC, registered in the U.S.

Codewarrior is a trademark of Metrowerks Corporation, registered in the U.S.
and other countries.

Xcode and MacOS are trademarks of Apple Computer, Inc., registered in the
U.S. and other countries.

© Copyright 2005. Andescotia LLC. ALL RIGHTS RESERVED.

It should be understood that Andescotia LLC reserves the right to make changes
at any time, without further notice, to the Marten Integrated Development
Environment (IDE) suite of software, documentation, example code, and related
materials in order to improve them. This document is a member of that suite of
products.

In addition, Andescotia LLC does not assume any liability arising from the
application or use of any product in the Marten IDE product suite.

The products of the Marten IDE suite are not authorized for use in any capacity
to develop software applications where the failure, malfunction, or any
inaccuracy of the developed application carries a risk of death, bodily injury, or
damage to tangible property. Examples of (but not limited to) such proscribed
uses are control systems, medical devices, nuclear facilities, banking and other
financial software, and emergency systems.

Documentation that is supplied in electronic form may be printed for use by the
purchaser under their rights to "fair use". Except for "fair use" purposes, no
portion of this document or any of the Marten IDE product suite may be
reproduced or transmitted in any form or by any means, including electronic or
mechanical, without prior written permission from Andescotia LLC.

ALL SOFTWARE, DOCUMENTATION, AND RELATED MATERIALS OF
THE MARTEN IDE PRODUCT SUITE ARE SUBJECT TO THE MARTEN
IDE ANDESCOTIA END USER LICENSE AGREEMENT.

Andescotia LLC Contact Information

Office: Andescotia LLC

524 Fieldstone Dr.
Bozeman, MT 59715

Website: www.andescotia.com

Technical Support: techsupport@andescotia.com

http://www.andescotia.com
mailto:techsupport@andescotia.com

3

Contents

Contents .. 3

Chapter 1: Marten language elements ... 9
Projects and sections ... 9
Classes ..11

Attributes .. 13
Methods .. 14

Class methods ... 15
Universal methods ... 16
Cases ... 17

Operations .. 18
Terminals and roots ... 19
Types of operations .. 19
Operation names .. 26
Connecting operations ... 26

Multiplexes .. 28
List annotations .. 28
Loop annotations .. 29
Repeat annotations .. 29

Controls .. 29
Types of controls .. 30
Success, failure, and error ... 33

Persistents .. 34

Chapter 2: General Editor usage.. 35
General Editor operations ... 35

Starting the Marten editor ... 35
What happens when Marten is started ... 37
Quitting Marten ... 39

Project and section operations ... 39
Creating a new project ... 41
Opening an existing project .. 42
Creating a section .. 42
Adding an existing section to a project ... 43
Saving sections .. 43
Saving a project ... 44

Common operations on windows ... 45
Standard window components ... 45
Opening windows ... 45
Closing windows .. 48

Selection and editing rules ... 48
Selection in general .. 49

4

Selection and operations .. 49
Multiple selection .. 50
Selection: icon vs. text ... 50
Editing text ... 50

Editing Marten elements ... 50
Creating elements .. 51
Deleting elements .. 51
Moving elements .. 51

Finding Marten elements .. 51

Chapter 3: Editor menus and menu commands ... 55
The System Menu .. 55

About Marten .. 55
Preferences .. 56
Services ... 57
Hide Marten .. 57
Hide Others .. 57
Show All ... 58
Quit Marten .. 58

The File menu ... 58
New .. 58
Open .. 58
Close .. 58
Save ... 59
Save As .. 59
Revert ... 59
Import ... 59
Export ... 60
Update .. 60
Page Setup .. 60
Print .. 60

The Edit menu .. 60
Undo ... 61
Redo ... 61
Cut .. 61
Copy ... 61
Paste .. 61
Clear ... 61
Duplicate .. 62
Select All .. 62
Move To Section .. 62
Propagate Attribute .. 62
Find .. 62
Spelling .. 62
Special Characters ... 62

The Operations menu ... 63
Method ... 63
Primitive ... 64
External Procedure .. 64

5

Constant ... 64
External Constant ... 64
Match ... 64
External Match ... 64
Persistent ... 64
External Global ... 65
Instance .. 65
External Address .. 65
Get ... 65
External Get ... 65
Set .. 65
External Set .. 65
Local ... 66
Evaluate ... 66
Run Mode ... 66
Operations to Local .. 66
Local to Method .. 66
Tidy Operations .. 68
Resize Operations .. 68
Reset Operations ... 68

The Controls menu ... 68
Control menu commands that only apply to operations 68
Control menu commands that affect roots and terminals 69
A menu command for toggling activation conditions 70
Control menu commands for controls on operations and the output bar 70

The Window menu .. 71
Information ... 71
Sections ... 73
Universal Methods ... 73
Classes .. 73
Persistents ... 73
Methods ... 73
Attributes .. 73
Class Attributes .. 74
Errors ... 74
Stack .. 74
Remember Windows .. 74
Restore Windows ... 74
Minimize Window ... 74
Minimize All Windows .. 74
Bring All to Front .. 74
Arrange in Front ... 75

The Tools menu .. 75
 ... 75

Chapter 4: Editor windows ... 77
The Projects window .. 77

Opening the Projects window ... 78
Starting a new project .. 78
Removing a project from the Projects window 79

6

Accessing the contents of a project ... 79
The Sections window .. 80

Opening the Sections window .. 82
Creating a new section ... 82
Removing a section from the project .. 83
Adding an existing section to the project .. 83
Renaming sections ... 84
Accessing the contents of a section ... 84

The Universal Methods window .. 84
Opening a Universal Methods window ... 85
Creating a universal method .. 85
Renaming a universal method ... 86
Deleting a universal method ... 86
Accessing universal method contents .. 87

The Classes window ... 87
Opening a Classes window .. 88
Creating a class ... 88
About names for classes .. 88
Deleting a class .. 88
Creating subclasses; assigning a parent to a class 89
Orphaning a child class .. 90
Accessing the attributes and methods of a class 90

The Persistents window .. 91
Opening the Persistents window .. 91
Creating a persistent .. 92
About names for persistents .. 92
Deleting a persistent .. 92
Accessing the contents of a persistent ... 92
Persistents in the section file .. 93

The Class Methods window .. 93
Opening the Class Methods window .. 94
Creating a Class method .. 94
About names of class methods .. 94
Deleting a class method ... 94
Changing the type of class method .. 94
Accessing the contents of a class method ... 95

The Class Attributes and Instance Attributes windows 95
Opening an Attributes window ... 96
Creating an attribute ... 97
About names of attributes .. 97
Deleting an attribute ... 97
Reordering attributes .. 97
Clipboard functions on attributes .. 98
Changing the default value of an attribute ... 98

The Case window ... 98
Opening a Case window .. 99
Using operations in a Case window ... 100
Effect of opening operations by double-clicking 101
Working with roots and terminals ... 103
Connecting operations ... 105

7

Using controls .. 108
Using locals .. 109
Clipboard functions on operations ...113
Using cases ...114

The Value window ...116
Opening a Value window ..117
Closing a Value window ..117
Closing a chain of Value windows ...117
Data types in the Value window ..118
View options in the Value window ...118
Clipboard functions on values .. 121

Index.. 123

8

1

1Marten language elements
� Projects and sections

� Classes
� Methods

� Operations
� Multiplexes
� Controls

� Persistents

The Marten software development environment provides an implementation of the
Prograph computer language created by Philip Cox and others (cf. "Prograph-A Step
Towards Liberating Programming From Textual Conditioning"; Cox, Giles, and
Pietrzykowski in 1989 IEEE Workshop on Visual Languages) . Prograph is an object-
oriented graphical programming language where the software code is created from
diagrams wherein language element icons are connected together. Text is used solely
to name certain elements of the language.

A Marten program can be made up of the following elements.

� Projects and sections which are files that store Marten source code.
� Classes and class-related elements such as attributes and class methods.
� Universal methods which are methods independent of any class.
� Operations, which are the units of execution in Marten. These can be user- defined

or packaged with Marten. Operations can have associated controls that provide
control flow.

� Data consisting of simple data types and class instances.
� Persistents, which provide global access to data values.

Projects and sections

Sections are files that store Marten source code. A section allows you to save
functionally-related Marten code in one place so that you can easily reuse that code in
different projects.

A Marten project is represented by two files, the project file and the project application.
When a Marten project is created, an actual executable for that project is immediately

Marten language elements 10
created on disk. This executable is referred to as the project application. It will be
launched each time the project is opened and communicate with the editor. In addition
to the project application, a project file is created that contains a list of the sections for
the project, a list of libraries to be loaded with the project, and finally a list of resources
(icons, strings, images, etc.) that are stored in the project application.

The currently open projects of a Marten development session are listed in the Projects
window.

There are three icons preceding each project name listed. Each icon represents a
different component of a Marten project.

By double-clicking the middle icon, you may view the sections of a project in a
Sections window.

The left-most icon represents the libraries loaded with the project. These
libraries contain the extensions to the basic elements of the language. The
extensions can be additional operations, procedures, constants, and data
structures.

The middle icon represents the sections of the project. Each section
contains class, universal method, and persistent definitions.

The right-most icon represents the additional resources of the project. For
a modern application there will often be a need for icons or images to be
displayed. In addition, many applications will store the text (strings)
needed by an application in a separate file so that they can be modified
easily. These files are stored within the project application.

Marten language elements 11
The three icons that precede each section name represent three types of top-level
Marten elements:

A section usually contains functionally-related elements. For example, the set of
classes that implement an evolutionary tree, such as "leaves" and "branches", would be
most usefully stored in the same section. When a section is included in a project, its
classes, universals, and persistents become available to your application.

Classes

In an object-oriented language such as C++ or Prograph, a class is the language element
that provides the definition of properties and actions for a specific type of object. The
properties and actions are called the class members. In C++, a class may have member
variables to provide definitions of the properties and member functions to provide
definitions of the actions. In Prograph, these types of members are called attributes and
methods repectively. A Marten class therefore contains two types of members:

Classes

Universal methods

Persistents

For details on working with sections, see "The Sections window" on page 80.

Marten language elements 12
� Attributes, which define the properties of an object of the class
� Class methods, which are the actions that can be performed against objects of the

class.

An actual object of a class is referred to as an instance of that class.

For example, consider a class that provides a description or model of a person.
Attributes of the class could include the name and age of the person and the class could
include methods for setting the name and getting the age.

You view the classes of an individual section in a Classes window.

Each class in a section is represented by three icons:

Inheritance lets you designate a class as a subclass of existing class. The resulting class,
the subclass, inherits all attributes and methods of the parent class, its immediate
ancestor. The parent may, in turn, have inherited attributes and methods from a parent
class. A subclass can have attributes and methods in addition to those it inherited.
Because Marten supports only single-inheritance, a subclass can only inherit from a
single parent class.

Provides access to the Instance attributes.

Provides access to the Class methods.

Provides access to the Class attributes.

For information on class methods, see "Class methods" on page 15. For details on
working with classes in the Marten Editor, see "The Classes window" on page 87.

Marten language elements 13
Attributes
An attribute is a member variable of a class. It is a property of an instance of the class,
a sort of "noun". Attributes are named and provide access to values which can be any
data type. The definition of an attribute for a class also allows for the storage of a
default value to be supplied to a newly created instance. Marten provides two types of
attributes.

� Class attributes
� Instance attributes.

Class attributes
A Class attribute has one value for the class as a whole; its value is shared by all
instances of the class. You can view class attribute definitions in a Class Attributes
window.

An attribute icon is displayed with its name and its default value to the right of the
name.

The two types of icon indicate whether the attribute is defined in this class or inherited
from a parent class.

Note: For a given class, each attribute in the class must have a unique name.

Instance attributes
An Instance attribute can have a different value in every instance of the class. You can
view instance attribute definitions in an Attributes window.

Class attribute defined for this class.

Class attribute inherited from a parent class.

For information on working with attributes, see "The Class Attributes and Instance
Attributes windows" on page 95.

Marten language elements 14
The two types of icon indicate whether the attribute is defined in this class or inherited
from a parent class.

Note: For a given class, each attribute in the class must have a unique name. The
word default cannot be used as the name of an attribute.

Methods

Methods are the software routines of the Marten IDE. Classes and sections have
methods, with the methods of a class termed "class methods" while those of a section
are called "universal methods". A shorthand is often used with "universals" standing in
for universal methods and just "methods" for class methods.

A "type" may be installed for a method. This allows them to participate in program
execution in a special way; they can be constructors, destructors, tools, editors, and
importantly, the MAIN method.

Within a class, all methods must be uniquely named, regardless of type. All universals
across all the sections of a project must also be uniquely named.

The following sections describe the types of methods available in Marten and provide
additional method-related information. They include:

� Class methods
� Universal methods
� Cases.

Instance attribute defined for this class

Instance attribute inherited from a parent class.

For information on working with attributes, see "The Class Attributes and Instance
Attributes windows" on page 95.

Marten language elements 15
Class methods
A class method is a method defined for use within a particular class. In contrast to
attributes which are the "nouns" of an object and define its properties, class methods
are the "verbs" and define the actions or behaviours of that object.

Note: For a given class, each class method of a given type must have a unique name.

After creating a class method, you can assign a type to the method so it can participate
in program execution in a specific way. There are four types you can assign:

� Constructor type method
� Destructor type method
� Editor type method
� Tool type method.

Constructor type method
Many times in your code, you will follow the creation of an instance for a certain class
with a consistent initialization of that instance. If you wish to perform that initialization
for all newly created instances of that class in any method, you can create a
"constructor" for that class. A class constructor is a method which will be called
whenever a new instance of that class is created programatically. This type of method
has one input and one output. The input is the newly created instance and the output
must be that instance. In between, you modify that instance to suit your specific
purposes. Because of the nature of a constructor, there can be only one such method per
class.

Destructor type method
Similar to the notion of a constructor, you may wish to perform specific processing just
as an instance of a class is about to be garbage-collected and removed from the heap.
You might wish to make a system call to free system allocated objects before an
external block is disposed of. This can be accomplished by a destructor, a class method
called just before the instance is disposed of. This type of method has one input, the
instance, and no outputs. In addition, there can be only one destructor per class. One
important distinction between a constructor and a destructor is when they are called.
Because a destructor can not know the context of its disposal, a destructor is ALWAYS
called when a object is disposed of, EVEN when that occurs non-programatically. An
example is when a persistent, that already contains an instance, has its value changed
by the Value Editor. In that case, the soon to be disposed of instance will call its
destructor. In contrast, if a new instance is created and placed in a persistent by the
Value Editor, the constructor is NOT called.

Editor type method
If you create a method for editing instances of a class, you can designate that method
as an Editor. For example, you might have a class which represents a visual object,
like a rectangle. It is far easier to modify the attributes of the object by visually editing

For information on how to designate a method as a Construction method, see
"Changing the type of class method" on page 94.

For information on how to designate a method as a Destruction method, see "Changing
the type of class method" on page 94.

Marten language elements 16
them (say by resizing the image of the rectangle) than by typing in new values for the
attributes in the Value Editor. You can create such an editor and and have the IDE
invoke it appropriately to edit an instance or the attributes of a class. The method that
is invoked is called an "editor method" and it should be used to open an editor of your
design. An editor method has two inputs and two outputs. The first input is the
instance you wish to edit. The second input is available to be used to set up a parent-
child relationship between editors. For an initial invocation, this input will be NULL.
The first output should be a Boolean, either TRUE indicating the instance was modified
or FALSE indicating that the instance should not be changed. The second output
should be the modified instance which will then be substituted for the original one in
the Marten IDE.

Tool type method
A class method has been designated as a tool can be executed from an Editor menu
command. Tools allow you to extend the Marten Editor and are typically used to
provide functionality useful during development.

There are several times when you might wish to run certain methods from the IDE. For
example, you might run a method to accomplish an editing function or to execute a test
suite. Because of the nature of the Marten IDE with its focus on persistents and stored
instances, it is often useful to create a method which will construct a list or an instance
which can then be stored in a persistent for future use by the application. While you can
always navigate to such a method and execute it, it is easier to designate such a method
a tool. When a method is installed as a tool, the name of the method is placed in the
Tools menu and it will be executed if selected from the menu. Because the IDE cannot
supply a method with inputs nor process outputs, a tool method cannot have any inputs
or outputs.

Universal methods
 Universal methods, or "universals", are methods that are procedural in a nature and are
not members of any class. Universal methods are used:

� To implement all processing that is not class-based
� For working with data that is not associated with classes.

A universal method icon is identical to the class method icon. Universal method names
must be unique across an entire project.

For information on how to designate a method as an Editor method, see "Changing the
type of class method" on page 94.

For information on how to designate a method as a Tool, see "Changing the type of
class method" on page 94.

Marten language elements 17
Cases
Every universal or class method contains a list of one or more "cases". A case is a
blueprint of operations and connections, the actual executable code of a Marten project.

When a method is called, either by the application (the MAIN method) or by another
method, the first case in the list is executed. Starting with the first operation in the case,
the input bar, each operation in the case executes and then processing passes to the next
operation in turn. When an operation executes, it may either succeed or fail. This
condition may be tested (as in the example of a Match operation) and the result of the
test may lead to a change in control flow.

The test may result in the method terminating, finishing, continuing, failing, or control
being passed to the next case in the list.

The following diagram shows two cases of a method called Factorial.

For information on working with universal methods in the Marten Editor, see "The
Universal Methods window" on page 84.

For details on control flow in general and the use of controls, see "Controls" on page
29.

Marten language elements 18
A case consists of an input bar and output bar and a set of operations connected with
datalinks. The input bar lets you pass parameters to the case while the output bar
returns values from the method.

Each case of a method has the same number of inputs and outputs. The number of
inputs and outputs of a method is referred to as its arity.

A Case window’s caption displays:

� An expression of the form n:m, where n is the number of the current case shown
and m is the number of cases in the method

� The name of the class (if the method is class-based)
� A slash, / (if the method is class-based)
� The name of the method.

Operations

An operation is the basic unit of execution in a case. Operations, in addition to datalinks
and synchros, are the building blocks of cases. Operations initiate some action. They
are most commonly used to make calls to primitives or methods, set or return the value
of attributes or persistents, or perform some other form of processing.

Below is the icon for a typical operation. An operation has a name, zero or more imputs
and zero or more outputs.

For information on working with cases of methods in the Marten Editor, see "The
Case window" on page 98.

Marten language elements 19
An operation can perform its processing using input data and can produce output data.
An operation can also have side effects. It can change values on simple data or change
the state of an object.

An operation in a case can execute as soon as data has arrived on all its inputs.

The following sections provide details on Marten operations. They include:

� Terminals and roots
� Types of operations
� Operation names
� Connecting operations.

Terminals and roots
In a dataflow language, data in a method is passed from operation to operation along
datalinks. Datalinks provide input data to an operation through terminals at the top of
the operation. If the operation returns data, it is passed out of one or more output roots
at the bottom of the operation. Output data can be routed to another operation using a
datalink.

The input bar in a case can have roots which pass parameters to operations in the
method. The output bar can have terminals used to pass values out of the method.

For certain primitives, the number of terminals and roots can vary. This depends on the
type of the primitive and the action that it performs. For example, the (join) primitive
lets you join two lists. Minimally two inputs are required but you can also pass in more
lists using additional roots.

The minimum number of roots and terminals required by an operation is referred to as
its arity.

Types of operations
There are a number of different types of Marten operations. Each type of operation
performs a specific action in Marten. The types of operations are:

� Simple
� Constant operations

For information on working with roots and terminals, see "Working with roots and
terminals" on page 103. For more information on datalinks, see "Connecting
operations" on page 26.

Marten language elements 20
� Match operations
� Persistent operations
� Instance operations
� Get operations
� Set operations
� Super operations
� Locals
� Evaluate operations.

Simple
A Simple operation can call:

� A primitive:

� An external procedure, such as a Macintosh Toolbox call:

� A method, either universal or class-based, determined by the naming convention.

Constant operations
A Constant operation is used to pass a static, textual value to another operation. It has
a name and a single root:

In addition to these types, there are external operations which provide access to code
written in C. For details, see "External operations" on page 25.

For details, see "Operation names" on page 26.

For details on how to change an operation into a simple operation, see "Simple" on
page 68.

Marten language elements 21
Its name is the textual representation of a simple value: a string, a list, or a number.
When a constant operation executes, this value is made available on its root to be
passed to another operation.

Match operations
A Match operation tests the value passed from the output root of another operation. It
has a name, a single terminal, and always has an attached Control.

Like a constant, the name of a Match operation is a textual representation of a simple
value. When a match operation executes, its value is compared to the value passed into
its terminal. The match operation succeeds or fails depending on the results of the
comparison.

Persistent operations
A Persistent operation accesses the value of a persistent. It has a name, at most one
terminal, and at most one root. For details on persistents, see "Persistents" on page 34.

If a persistent operation has an input, it is from a Set Persistent operation. The value
passed into the input becomes the value of the persistent. If it has an output, it is to a
Get Persistent operation.

Instance operations
An Instance operation instantiates an object of the class corresponding to its name. An
Instance operation has one input, one output, and a name.

� If no value is passed on the input terminal (that is, there is no attached datalink),
the instance is created with default attribute values set in the class definition.

� If the value of the input terminal is a list in the form ((attr-name-1 value-1) (attr-
name-n value-n)), the input is treated as a set of attribute/pairs. The instance is
created with its attribute values set as specified by the input list:

For details on how to change an operation into a constant, see "Constant" on page 64.

For details on controls, see "Controls" on page 29. For details on how to change an
operation into a match, see "Match" on page 64.

For details on how to change an operation into a persistent operation, see "Persistent"
on page 64.

Marten language elements 22
� If a Construction method exists in the class specified by the name of the Instance
operation, the instance is created, passed on as input to the Construction method,
and is then available on the root of the instance operation.

� If there is no Construction method in the class referenced by the name of the
Instance operation, then the Instance operation creates the instance.

Get operations
A Get (short for ‘Get attribute) operation returns the value of an attribute. The name of
a Get operation is the name of the attribute that is to be accessed. A Get operation has
one terminal, and two roots:

The input on a Get operation can be either an instance of a class, or a string whose value
is the name of a class. The second option returns the default value of the attribute, and
is also useful for accessing class attributes without first having to find or create an
instance of the class.

Get operation outputs are:

� Left root, the instance (if the input was an instance).

� Right root, the value of the attribute.

If the name of a Get operation specifies a Universal reference (the name is not preceded
by a slash), the value of the attribute is directly accessed.

If the name of a Get operation specifies a data-determined reference (the name is
preceded by a slash), the operation calls a Get method of that name in, or inherited by,
the relevant class. If that Get method does not exist, the attribute is directly accessed.

For details on how to change an operation into an instance operation, see "Instance" on
page 65.

If the input was the name of the class, the left root is the
name of the class in interpreted code. However, for
efficiency reasons, the default instance of the class is
returned in compiled code.

For information on types of reference, see "Operation names" on page 26. For details
on how to change an operation into a Get operation, see "Get" on page 65.

Marten language elements 23
Set operations
A Set (short for ‘Set attribute) operation sets the value of an attribute. The name of a
Get operation is the name of the attribute that is to be set to a new value. A Set
operation has two terminals, and one root:

Set operation outputs are:

� Left root, an instance of a class, or a string whose value is the name of a class. If
the input is a string the default value of the attribute will be set. This latter option
is also useful for setting a class attribute without first having to find or create an
instance of the class.

� Right root, the value to which the attribute is to be set.

If the name of a Set operation specifies a Universal reference (the name is not preceded
by a slash), the attribute is directly accessed and its value set.

If the name of a Set operation specifies a data-determined reference (the name is
preceded by a slash), the operation calls a Set method of that name in, or inherited by,
the relevant class. If such a Set method does not exist, the attribute is directly set.

Super operations
A Super operation is a class-based operation that executes a method belonging to the
class of its immediate parent:

The name of a super operation is always in the form //name. The class of the method
called is determined by the class of the method using the Super operation. The search
for the method to be executed does not start in that class, but in the class immediately
above it in the class hierarchy. The icon for a Super operation has an upward-pointing
arrow on its right side.

You can use a Super operation when writing a method in a subclass that has the same
name as a method in its parent class, but also uses that parent class method as part of
its definition. This means that method x can refer to its parent’s method x without
infinite recursion.

The output of a Set operation is an instance, if the input was an
instance. If the input was the name of the class, the output is
the name of the class in interpreted code. However, for
efficiency reasons, the default instance of the class is returned
in compiled code.

For information on types of reference, see Operation names. For details on how to
change an operation into a Set operation, see "Set" on page 65.

For details on how to change an operation into a super operation, see "Super" on page
69.

Marten language elements 24
Locals
A Local Operation, or Local Method, is a grouping of a set of operations into a single
user-named icon. This can be used to save space in a case window and allows you to
create black box code units; making several operations that perform some functionally
related code into a single operation:

Locals have two components - the local operation icon and the associated Local method
of the same name. Locals are meant for use within one method.

Evaluate operations
An Evaluate operation evaluates a mathematical expression. For example:

An Evaluate operation has a name, one or more terminals, and one root.

Name
The name of an Evaluate operation is the actual mathematical expression. Operators
that can be used in the expression are listed below. All operators are binary (for
example, a>>b right shifts a by b bits) unless otherwise indicated:

@ exponentiation

+ addition (binary and unary)

- subtraction (binary and unary)

* multiplication

/ division

// integer division

% remainder from integer division

& bitwise AND

| bitwise OR

^ bitwise XOR

~ bitwise NOT (unary)

<< bit shift left

>> bit shift right

Operands (variables) can be the single letters a through z (case insensitive).
Parentheses can be used to provide precedence ordering.

For details on how to create locals, see "Local" on page 66 and "Operations to Local"
on page 66.

Marten language elements 25
Terminals
The input arity (number of terminals) of an Evaluate operation is the largest position
within the alphabet of the variables used in the expression. For example, if the letter j
is used as a variable, at least 10 terminals are created on the operation.

Root
An Evaluate operation has one root, which passes out the result of the evaluation.

External operations
Marten supports calls to routines and accessors to data written in C. Macintosh
Toolbox API calls, and accessors to External constants, structures, and fields, are
implemented in this way. For a detailed discussion of the calling conventions for
External operations refer to the Marten Primitives Reference.

To summarize the type of External operations:

External Procedure

External procedures are similar to generic Marten methods. The name of an External
procedure must be a valid name of an External procedure.

External Constant and External Match operations

External Constants, Matches, and Globals are similar to Marten Constants, Matches,
and Persistents. The names of External constants, matches, and globals must be valid
names of External constants and globals.

External Get Field and External Set Field

If the letters a, b, and d, used as variables, four terminals are
created, with the nth terminal corresponding to the nth letter of
the alphabet. Therefore, the fourth terminal supplies a value
for the variable d.

For details on how to change an operation into an evaluate operation, see "Evaluate"
on page 66.

Marten language elements 26
External Gets and Sets are similar to their Marten counterparts. The names of these
operations must be valid names of externally-defined fields. They can also have an
extra terminal to specify a zero-based index into an array.

Operation names
When first created, all operations are Simple. When a name is assigned to the
operation, Marten checks to see if it references a primitive, a call to external code, or a
user-defined method, and then changes the type of the operation, altering the
appearance of the operation icon appropriately.

If an operation calls a user-defined method by name, the method to be executed is found
according to the following rules:

� If the operation name has the form methodname, with no slash (/) preceding the
name, the operation calls a universal method. This is referred to as a universal
reference.

� If the operation name has the form /methodname, the operation calls a method with
name methodname in the class of the instance arriving as data on the leftmost
terminal of the operation. This is a data-determined reference. If the class is a
subclass and does not have a method of its own called methodname, an inherited
method called methodname is used. If no method called methodname is found in
the class or in any of its ancestors, this results in an error condition.

� If the operations’s leftmost terminal is not an instance of a class, but is a simple
datatype, Marten will attempt to execute a universal method called methodname.

� If the operation name is in the form classname/methodname, Marten searches for
the method in class classname. If it is not found there, Marten will search the
ancestors of that class. This is referred to as an explicit reference.

� If the operation name is in the form //methodname, then Marten searches for
methodname in the class of the case containing the operation (that is, in the class
specified in the case window’s title bar). This is referred to as a context-determined
reference.

Connecting operations
Marten provides two ways in which operations can be connected: with datalinks which
pass data between operations and with synchro links which determine the order in
which operations execute.

The following sections contain more information on the two methods of connecting
operations:

� Datalinks
� Synchro links.

Datalinks

In Marten, data is passed into an operation through terminals at the top of the operation
icon, and passed out through roots on the bottom side of the operation icon.

For examples of the appearance of the various types of operation icons, see the
descriptions under "Types of operations" on page 19.

Marten language elements 27
Data flows from the roots of one operation to terminals of other operations through
datalinks. Data enters a method via a root on the input bar, and exits a method via a
terminal on the output bar:

While a root can have multiple connecting datalinks passing a value to several other
operations, a terminal can have at most one connecting datalink, excluding a Loop
annotation. For example:

The input bar and output bar of a case are also operations. They are automatically
supplied by Marten and cannot be deleted or duplicated. The input bar has no
terminals, the output bar has no roots, and both are unnamed.

Synchro links
In a Marten case, operations can execute as soon as all their input data have arrived.
This makes it possible that several operations can be ready to execute next. When this
is the case, the order is chosen randomly (at edit time, not at runtime) by the Marten
Interpreter, unless a synchro link is present.

A synchro link, or synchro, dictates the sequence of execution between two operations.
If the synchro is from operation /Dispose Editor to operation NULL, it guarantees that
NULL executes after /Dispose Editor has executed:

When you create a datalink between the root of an operation and a terminal of the same
operation, you create a Loop annotation. For more information, see "Loop
annotations" on page 29.

Marten language elements 28
NULL does not necessarily execute immediately after /Dispose Editor; other
operations can execute in the interim.

A synchro link joins the two operations, pointing from the first to the second. Data is
not passed along a synchro link.

Multiplexes

Multiplexes provide looping, or list-processing functions. They can be applied to
primitive operations as well as user-defined operations. The Marten editor provides the
following multiplex annotations:

� List annotations are applied to individual terminals and roots. On a terminal, they
have the effect of applying the function of the associated operation to every item of
a list arriving on the annotated terminal. A list-annotated root returns values from
the operation as a list.

� Loop annotations make repeated calls to a method, passing the output of each
iteration as input of the next iteration. They can be applied to both terminals and
roots.

� Repeat annotations make repeated calls to a method. You apply Repeat annotations
to an operation.

List annotations
Applied to a terminal, the List annotation results in that operation being applied to
every element of the list arriving on that input. Applying a List annotation to a terminal
changes its shape to a triplet of circles.

A list-annotated operation applies itself to each element of its input list or lists:

� Until every element of the shortest input list has been used, or
� Until a Fail, Terminate or Finish control within the called method is activated.

A List-annotated root returns the list of elements returned from an operation as a list of
results. The output list does not include any NONE values that may have been
produced.

An operation can have multiple list-annotated terminals and roots.

For information on how to apply this annotation, see "List" on page 69.

Marten language elements 29
Loop annotations
A Loop annotation is applied to a root/terminal pair on an operation that calls a method.
It causes the results flowing out of the loop-annotated root to be cycled back in as the
input on the loop-annotated terminal for the next iteration of the loop. An operation
with loop-annotations executes repeatedly until activation of a Fail, Terminate or
Finish control within the called method.

Applying a Loop annotation to a terminal/root pair changes the shape of the terminal
and root to a portion of an arc.

List annotations are similar to a FOR loop in a procedural language. The FOR loop is
the simplest case of a loop-annotated method, however. You can set up a method to
terminate based on testing of any supplied condition. To terminate the loop, you must
implement the pre-test or post-test condition using the Fail, Terminate, and Finish
mechanisms in the called method.

Repeat annotations
A Repeat annotation executes repeatedly until activation of a Fail, Terminate or Finish
control in the called method:

Repeat annotations are similar to REPEAT...UNTIL or WHILE...DO loops in a
procedural language. To terminate the loop, you must implement the pre-test or post-
test condition using the Fail, Terminate, and Finish mechanisms in the called method.

Putting a Repeat annotation on an operation creates stacked copies of the operation.

Controls

Flow of execution within a Marten program is provided by "controls" associated with
operations. A control is activated on the success or failure of the operation. Marten
operations can succeed, fail, or be in error.

Visually, controls are displayed as small square icons attached to the right side of an
operation icon. There are two key properties of a control: the action that is to be taken,
and whether that action is to be taken on success or failure of the operation. Control
icons depict this as follows:

For details on using controls to terminate execution of a method, see "Controls" on
page 29. For information on how to apply this annotation, see "Loop" on page 69.

For details on using controls to terminate execution of a method, see "Controls" on
page 29. For information on how to apply this annotation, see "Repeat" on page 69.

Marten language elements 30
� A green signal within the control icon indicates that it is activated on success of the
operation

� An X within the control icon indicates that it is activated on failure of the operation.
The check mark and X are called activation marks.

� The other graphics within the square icon indicate the action to be taken. This
includes actions such as forcing the method to proceed to the next case or
terminating execution of the method.

The following sections provide additional detail on controls:

� Types of controls
� Success, failure, and error.

Types of controls
Controls on operations dictate an action to be taken on a particular condition. The types
of controls available in Marten are:

� Next Case control
� Continue control
� Terminate control
� Finish control
� Fail control
� Inject control.

Next Case control
The Next Case control terminates processing of the current case and passes control to
the next case in the method. If there is no next case an error condition is signalled. The
Next Case icon is plain, with nothing inside it except for its activation mark.

Continue control
The Continue control continues processing of the current case based on the result of a
tested condition.

For information on working with controls, see "Using controls" on page 108.

For information on how to add a Next Case control to an operation, see "Next Case"
on page 70. For information on the activation condition, see Success, failure, and error.

Marten language elements 31
� Continue on Success is the default for operations, and has no icon. If Continue on
Success fails, the Marten Interpreter will generate an error message indicating that
the operation failed but there is no control on it.

� The Continue on Failure icon has an X activation mark and includes depictions of
small input and output bars. You can use this control to ignore failures and error
conditions.

The alternative to continuing execution is to terminate, finish, or fail.

Terminate control
The Terminate control immediately stops execution of the current case and terminates
any repetition of the current method. If the method returns values, the values returned
are those produced during the last successful iteration of the method. NULL is returned
if there was no iteration.

The small input bar within the Terminate control icon, indicates that values returned
are those currently on the input bar (that is, values returned on the output bar on the last
successful iteration).

Finish control
The Finish control allows the current case to finish executing but terminates any
repetition of the current method.’ If the method returns values, the values returned are
those produced by the current case. This is indicated by the small output bar on the
Finish control icon.

For information on how to add a Continue control to an operation, see "Continue" on
page 71. For information on the activation condition, see Success, failure, and error.

For information on how to add a Terminate control to an operation, see "Terminate" on
page 71. For information on the activation condition, see Success, failure, and error.

Marten language elements 32
When an operation with a higher precedence is encountered, a Next Case control for
example, that operation takes precedence over the Finish control.

Fail control
The Fail control propagates failure to the calling operation.

Below, the Factorial primitive returns 0 if no error occurs.

The match-with-0 operation has a Fail control, so if Factorial does not return 0, the
match fails, and Failure is propagated to the calling operation, which in turn fails. There
should be an appropriate control on the calling operation to handle that failure.

Inject control
An Inject control provides a name for an operation at runtime. You provide the
operation name by passing a string into the Inject.

When an Inject is applied to a selected terminal, it assumes a distinctive shape.

Injects can be combined with List and Loop annotations.

Inject terminals cannot be used on the following types of operations: Constants,
Matches, Local or any of the External operations.

The following example shows how an inject control could be used:

For information on how to add a Finish control to an operation, see "Finish" on page
71. For information on the activation condition, see Success, failure, and error.

For information on how to add a Fail control to an operation, see "Fail" on page 71.

Marten language elements 33
Here an instance of a class is required for use later in program execution. The Class
Name attribute supplies a string value which is used to generate the instance by use of
an inject control applied to an Instance operation. In general, injects are used to provide
a name to an operation; a name which will only be available at runtime.

Success, failure, and error
A control can have one of three results:

Success
By default, an operation’s execution succeeds.

Failure
An operation fails if:

� It is a match operation and the comparison fails
� It is a Boolean primitive operation with no roots that evaluates to FALSE

� Failure is propagated to it by a method that fails.

Error
An operation generates an error if:

� It is a primitive or external procedure call with inputs of an inappropriate type or
value arriving on terminals

� A Next Case control is included in the last case of the method
� A method called cannot be found
� A called method has arity different from that of the calling operation
� A method failed or terminated, the method has one or more outputs, and the

operation is not a multiplex.

For information on how to apply an Inject control, see "Inject" on page 69.

A Boolean primitive operation can have no root or one
root. If it has one root, it either returns TRUE or FALSE.
If it does not have a root, it either succeeds or fails.

Marten language elements 34
Persistents

Persistent operations, are named elements that can hold the value of a simple datatype
or an instance. Persistent values are retained between executions of an interpreted
program and saved by the Marten editor as part of the project.

Since Persistents are effectively global variables, the names of a persistent must be
unique across a project.

In a Case window, a Persistent operation can have a terminal. This would be used to
pass the value to which the persistent is to be set. A Persistent can also have a root,
used to access the value of the persistent.

For information on working with Persistents in the Marten Editor, see "The Persistents
window" on page 91.

2

2General Editor usage
� General Editor operations
� Creating a new project

� Common operations on windows
� Selection in general

� Editing Marten elements
� Finding Marten elements

The Editor is an integrated workbench for writing, testing, and debugging Marten
applications. It is the primary environment for creating, modifying, and maintaining
Marten source code.

The following topics provide an overview of features and behaviors of the editor
environment, describe general operations and common editor tasks, and introduce
topics that are covered in detail elsewhere.

General Editor operations

General operations and relevant information include:

� Starting the Marten editor
� What happens when Marten is started
� Quitting Marten.

Starting the Marten editor
To start the Marten Editor application, try one of the following:

Additional information on the Editor environment can be found in the following topics:

� "Editor menus and menu commands" on page 55
� "Editor windows" on page 77.

For information on the Interpreter environment, see "Using the testing and debugging
facilities" on page 9. For information on using the compiler, see "Creating compiled
applications" on page 9.

General Editor usage 36
� Double-click on the Marten application icon.

 The Marten application starts running and opens an empty project.

� Double-click an existing Marten project icon.

The Marten application launches and opens the corresponding project.

� Double-click on one or more existing Marten section icons.

The Marten application launches and adds the section(s) to an empty project.

� Drag a project icon and drop it on top of the Marten icon.

The Marten application launches and opens the corresponding project.

� Drag a section icon and drop it on top of the Marten icon.

The Marten application launches and adds the section to an empty project.

General Editor usage 37
What happens when Marten is started
When Marten loads a project, it loads each of the sections files included in the project
and any libraries that have been added to the project. The following topics provide
details on these two processes:

� How Marten loads extensions on startup
� How Marten adds sections when a project is loaded.

How Marten loads extensions on startup
Marten libraries contain extensions to the language you can use in building
applications. This can include

� Standard Marten primitives
� Third party primitives
� External definitions that provide access to compiled C code.

You add libraries to a project explicitly. Once you have added a library to a project and
subsequently saved the project, the library will be loaded each time you load the project
(if it is one of the search paths described below, otherwise you will be asked to find it).

On the other hand, if you start Marten by by double-clicling the Marten icon or double-
clicking a section icon, no libraries will be automatically loaded.

For details on extensions and libraries, refer to the Marten Primitives Reference.

How Marten adds sections when a project is loaded
When Marten loads a project, it adds each section included in the project. To optimize
your projects, you must understand the search path and folder trees, know which
folders are not searched for sections, and understand pathnames and search order.

Folder trees searched when Marten loads a project
When adding sections and libraries to a project, Marten searches several folder trees for
project components:

� The first, or project, tree starts at the folder containing the active project
� The second tree starts at the user library named Marten (~/Library/Marten)
� The third tree starts at the root library folder named Marten (/Library/Marten)
� The fourth tree starts at the network library folder named Marten (/Network/

Library/Marten)
� The fifth tree starts at the user library Frameworks folder (~/Library/

Frameworks)
� The sixth tree starts at the root library Frameworks folder (/Library/Frameworks)
� The sixth tree starts at the root library Frameworks folder (/Library/Frameworks)
� The seventh tree starts at the network library Frameworks folder (/Network/

Library/Frameworks)
� The eigth tree starts at the system library Frameworks folder (/System/Library/

Frameworks)

Marten searches all trees when looking for project components. All nested folders and
subfolders are searched.

Folders not searched when a project is loaded

General Editor usage 38
Folders with parenthesized names, (myProject folder) for example, are not searched
when Marten is searching for project components, regardless of their location.

About paths and search order
A project stores filenames only; it does not include pathnames. When you open a
project, Marten searches for a section first, in the project tree and then, if it hasn't been
found, in all the other trees (the Marten trees) in the order listed above. The pathname
to a section is resolved at the time the project is opened.

Implications and suggestions
When setting up a folder structure to organize the source code for your Marten projects,
keep the following in mind:

� You can override a section in the Marten trees by adding a section of the same
name to your project tree.

� Because Marten resolves full pathnames when a project is opened, you can store
section files in any tree, in any arbitrary subfolder structure.

� If you have sections that you want available to all projects, you can create a folder
in one of the Marten trees and store those sections in that folder.

� You can create a backup folder in your project folder, if you parenthesize the name,
(MyBackups) for example.

� A section file added using the Open menu command and NOT located in any of
the search trees will not be found when the project is subsequently closed and
reopened. The section must be located in one of the two trees to be found.

� You can remove all sections stored in the same folder from a project by
parenthesizing the folder name, reopening the project, and as Marten displays a
dialog for each section that is not found, clicking Remove. You should exercise
caution, however; do this on a copy of your project file, as restoring the sections
can be time-consuming.

� To allow the two search trees to be searched as quickly as possible while allowing
for maximum flexibility in organizing files, folder contents should be organized as
follows:

� Folders that contain section files should contain ONLY section files to
whatever extent possible

� Folders that contain only non-section files should have their names
parenthesized.

� As a general rule, project folders should NEVER be stored in the Marten
trees. This places the project tree inside the Marten trees and can result in the
project tree being searched twice for sections; the first time because it is the
project tree and the second time because it is part of the Marten trees. The
worst case scenario is to have all projects in the Marten folder. Not only will
this result in lengthy loading times, it can also result in the wrong sections
being loaded.

� You CAN put projects in the Marten trees if you create folder with a
parenthesized name and store your project folders within that folder. With that
setup, an individual project folder will be searched once as the project directory
tree, but the parentheses around the parent folder will prevent the remainder of
your project folders from being searched as part of the Marten trees.

General Editor usage 39
Quitting Marten
There are a number of ways to quit the Editor.

� To exit the Marten application, use any of the following techniques:

� If you are outside of the Marten editor and interpreter, you must first switch back
to the Marten environment. If you are running your project application (the
interpreter), for example debugging a method or executing your application, you
must finish the interpreter session. Click on the project application icon in the dock
to bring the interpreter to the front. Then either quit your executing application or
finish debugging or close any object editors, whichever applies. This should bring
the Marten editor to the front, then from the File menu, choose Quit.

� If you are not running the interpreter, then bring the Marten editor to the front by
clicking on the Marten icon in the dock. Once the editor is frontmost, choose Quit
command from the File menu.

� If you are in the Marten Editor/Interpreter environment, from the File menu,
choose Quit.

Project and section operations

When creating an application with Marten your source code is organized into a project.
A project is a Marten document. From the perspective of the Macintosh environment,
a project is a disk file with a distinctive icon.

In the Marten environment, a Sections window lets you view the sections of a project.

General Editor usage 40
A project typically consists of a number of sections. Like a project, a section is a disk
file with its own icon.

In Marten, a section provides access to a project’s highest level components: classes,
universal methods, and persistents.

Marten provides a number of operations for working with projects and sections.
"Starting the Marten editor" on page 35 describes ways to open projects and load
sections while starting Marten. "The Sections window" on page 80 describes a
dedicated editor for working with sections. Other available operations include:

� Creating a new project
� Creating a section
� Creating a section
� Adding an existing section to a project

General Editor usage 41
� Saving sections
� Saving a project.

Creating a new project
The first step in developing a new application is to create a project to organize your
source code. Once you have created a project, you can build sections manually or add
existing sections to the project.

Marten products that include a class framework are delivered with one or more starter
projects. For details, refer to the documentation for the specific Marten product.

� To create a new project while Prograph is running:

1. Bring the Projects window to the front. If there is not a Projects window open,
select the New Projects Window command from under the File menu.

2. COMMAND-click anywhere in the white space of the Projects window. An
alternative is to hold down the Control Key and click the mouse (this is a "right-
click" in MacOS X) in the white space of the Projects window.

A contextual menu opens.

3. Select the New Project command.

A dialog will appear asking you for the name of the project application you wish
to create.

4. Enter the name.

A new Project item is created in the Projects window with the name of your Project
application selected.

As opposed to starting a project from scratch, you can also use a
starter project. Starter projects contain predefined
functionality, a basic application framework for example. You
can modify and extend the functionality as need for your
application..

General Editor usage 42
5. Modify the name for the project and press RETURN.

Opening an existing project

� To open a project while Prograph is running:

1. From the File menu choose Open.

An Open File dialog opens.

2. Navigate to the folder containing the project to be opened.

3. From the File Types popup menu, choose Marten Project Files (*.vpx).

The file listing is updated to display only project files.

Note: Alternatively, you can choose to display all project, section, and text files.

4. Select the project in the file listing and click OK.

Creating a section
The most common reasons for creating a new section are:

� Starting a new set of classes, universal methods, and persistents
� Reorganizing existing source code.

Whenever possible, you should organize your source code so that sections contain
reusable, self-contained code that can be added to several projects, as needed.

� To create a new section use one of the following techniques:

1. Double click the Sections icon of the appropriate Project item.

A Sections window for that project appears.

2. COMMAND-click anywhere in the white space of the Sections window. An
alternative is to hold down the Control Key and click the mouse (this is a "right-
click" in MacOS X) in the white space of the Sections window.

3. Select New Section from the context menu.

A new Section item is created in the Sections window with the name Untitled
Section selected.

For details on working with projects, see "The Projects window" on page 77.

For details on working with projects, see "The Projects window" on page 77.
For details on how to open an existing project while starting Prograph, see "Starting
the Marten editor" on page 35

General Editor usage 43
4. Enter a name for the new section and press RETURN.

Adding an existing section to a project
Your source code should be organized so that commonly used functionality is stored in
individual sections that can be used in a number of projects. You can add an individual
section to an existing multi-section project.

� To add an existing section to the current project:

1. From the File menu choose Open.

An Open File dialog opens.

2. Navigate to the folder containing the section to be added.

3. From the File Types popup menu, select Section Files (*.vpl).

The file listing is updated to list only section files.

4. In the file listing select the section to be added and click Open.

Saving sections
A section may be saved at any time whether the contents have been changed or not, as
some modifications (such as window placement) are not considered to have modified
the contents.

A disk file is not created for a section until the section is saved.
When the section is saved, you should always accept the
suggested name presented in the Save dialog to keep the section
file name synchronized with the project section name. For
options on saving, see "Saving a project" on page 44 and
"Saving sections" on page 43.

If you are creating classes, universals, or persistents from scratch, icons in the Sections
window provide access to the respective editor windows. For information on working
with these editors, see the following sections:

� "The Classes window" on page 87
� "The Universal Methods window" on page 84
� "The Persistents window" on page 91.

A dirty section is one which has been changed since the last
time the section was saved. When a section is first created, or
as soon as it is changed, the section icon is displayed on a
background with a distinctive colour. The background colour is
no longer displayed once a section is saved. To “touch” or
“untouch” (make dirty or make clean) a section, CONTROL-
click on the section item and select Touch or Untouch from the
contextual menu.

General Editor usage 44
The options for saving sections are enabled when:

� A Sections window is the active window and a section icon is selected
� A Classes window, Universal Methods, Persistents window, Attributes window, or

Class Methods window is the active window; in which case you have the option of
saving the owning section.

� To save a section for the first time:

1. Select the appropriate Section item in the Sections window.

2. From the File menu, select the Save command.

A Save As dialog opens prompting you for a name and location for the section.

3. Navigate to the location where you want to save the section.

4. Click Save. Be sure to accept the suggested name of the file to keep the section file
name synchronized with the project section name.

� To save an existing section:

1. Select the appropriate Section item in the Sections window.

2. From the File menu, select the Save command.

� To save multiple sections simultaneously:

1. With the Sections window for a project active, select the Section items to be saved.

2. From the File menu choose Save.

Note: If any of the selected sections have not yet been named, a Save Section As
dialog prompts you for a name and location for the section.

Saving a project
Saving a project saves only the project file. Any sections that have been altered must
be saved explicitly. If the project is being saved for the first time, you should accept
the suggested name in the Save dialog to keep the project name synchronized with the
project file name.

General Editor usage 45
� To save a project:

1. Select the appropriate Project item in the Projects window.

2. From the File menu, select the Save command.

Common operations on windows

The following topics describe general principles and instructions for working with
Marten windows. They include:

� Standard window components
� Opening windows
� Closing windows.

The descriptions will not be repeated in other sections unless a rule or method does not
apply in certain cases. In that case, details are provided in the appropriate topic.

In addition, the following topics cover basic Macintosh functionality as it applies to
Prograph windows.

Standard window components
Most Marten editor windows have the following standard components: a close button,
a minimize button, a zoom button, and a caption. Depending on the type of editor
window, the caption may indicate the type of Prograph elements the window displays
or simply the name of the element.

Opening windows
In general, you must open an editor window to inspect, create, or modify Marten
elements in that window. The Editor offers a number of different ways to open
windows. These include:

� Opening windows by double-clicking icons
� Opening windows using the Windows menu

This section does not cover operations and features of specific window types: Sections
window, Universal Methods window, Classes window, Persistents window, Class
Methods window, Attributes window, Case window, and Value window. Each of these
windows provides functionality specific to the type of associated Prograph element.
For information on how to use these windows, see "Editor windows" on page 77.

General Editor usage 46
� Opening an ancestor window of an active window
� Opening windows from the Info window.

Keep in mind that those sections provide general instructions only; instructions on how
to open specific editor windows can be found in "Editor windows" on page 77.

Opening windows by double-clicking icons
An editor window contains icons that represent Marten elements. For example, a
Classes window contains a list of icons that represent the classes in a section.
Typically, Marten element icons provide access to other editor windows. In the case
of the Classes window, the icons give you access to the methods and attributes of a
class.

� To open the window represented by an icon:

• Double-click on the icon.

Opening windows using the Windows menu
Windows menu commands allow you to open a particular Sections, Universal
Methods, Classes, Persistents, Methods or Attributes window. They also let you make
an open window the active window.

General Editor usage 47
� To open an editor window that is currently closed.

1. From the menubar choose Windows.

2. Choose the type of the editor window to be opened.

For example, if you chose Universal Methods from the popup menu, you would be
prompted to select a section or if you selected Attributes you would be prompted to
select the class containing the attribute you want to work with.

� To make an open window the active window:

• From under the Windows menu, choose the Marten window to be opened from the
list of open windows at the bottom of the menu..

Opening an ancestor window of an active window

� To open the immediate parent window of an active window,

• Type COMMAND-\.

The parent window opens.

For detailed information on the Windows menu, see "The Window menu" on page 71.

General Editor usage 48
� To open any ancestor window of an active window,

1. COMMAND-click in empty space of the active window.

A contextual menu opens showing the ownership chain of windows leading to the
active window.

2. Use the Item Path command and select one of the ancestors from the menu.

Opening windows from the Info window

� To open a window on an item selected in the Info window:

• Double-click the icon.

Closing windows

� To close the front editor window, try one of the following

• Click on the close button

• Type COMMAND-W. An exception to this general rule is handling of the Value
window, which has no close box. Close this window by clicking the Cancel or OK
button.

Selection and editing rules

Icons for many Prograph elements have associated text. For example a class icon
always has a name. An operation can also have an associated comment. The following
topics present the basic guidelines on selecting icons and text:

General Editor usage 49
� Selection in general
� Selection and operations
� Editing Marten elements
� Multiple selection
� Editing text.

Selection in general
Clicking on an icon selects the icon. Clicking on the associated name selects that text.

The first click in a name or comment text area selects the entire text, which is
highlighted. When text is selected, a second click in the text area de-selects the entire
text and positions the insertion point at the click position. These points are illustrated
in Figure 1:

Figure 1: Selecting Marten icons and text

Note: You can use the ENTER and RETURN keys to toggle between selecting the
icon and its text.

Selection and operations
Marten operations in a Case window have their names within their icons. When you
click on the name of an operation, the name is selected and the insertion point is placed
at the click point.

Clicking outside the name, on the right or left side of an operation icon selects the icon,
and deselects the name. You can use the ENTER or RETURN key to toggle between
selecting the icon and the name of an operation:

In the Marten environment, a section name is the same as the
associated disk file. If you change a section name you must
choose the “Save As” command to save the section file and
accept the suggested name. Otherwise the project will attempt
to load a section file with your new name and none will be
found.

For background information on cases, see "Cases" on page 17. For information on
using Case windows, see "The Case window" on page 98.

General Editor usage 50
Multiple selection
Several Marten icons can be selected, but only one text item (name or comment) can
be selected at a time.

Selection: icon vs. text
When an icon is selected, alphanumeric and arrow keys are disabled. When text is
selected, the alphanumeric keys insert characters into the text and the left and right
arrow keys move the insertion point in the text.

Menu commands that apply to a Marten element are still enabled when the element’s
text is selected. For example, you can apply a control when an operation's text is
selected for editing.

Editing text
Text in Marten is edited using standard keyboard and menu item functionality. The
DELETE key, the arrow keys and Cut, Copy and Paste operations all work as expected.

Changes made to any text - names or values - can be undone back to the point at which
the text was selected for editing. That is, while text is selected for editing, choosing
Undo Text from the Edit menu will cause the text to revert to the value when the text
was selected.

Editing Marten elements

Marten provides a set of basic editing functions common to all language elements. The
following topics describe the most common editing functions:

� Creating elements
� Deleting elements
� Moving elements.

These are basic editing functions, only. Additional editing function depends on the
type of Prograph element and the editor window in use. For details, see "Editor
windows" on page 77.

General Editor usage 51
Creating elements

� To create Marten elements, try one of the following:

• COMMAND-click in the white space of the appropriate Marten window.

• From the File menu, choose New...

• CONTROL-click in the white space of the appropriate Marten window and select
the New... from the contextual menu.

Deleting elements

� To delete one or more selected elements, try one of the following:

• Press the DELETE Key,

• Select Cut or Delete from under the Edit menu.

• CONTROL-click the element and choose Clear from the contextual menu.

Undo Delete
The ability to undo a deletion is not currently implemented.

Moving elements
In a Case window, you drag an icon to move it to a new position in a window.

If more than one element is selected, dragging moves all the selected elements in the
window so that they maintain the same positions relative to each other.

When you drag an element to a new position, any connecting links (datalinks, synchros,
or inheritance links) are adjusted to account for the new position. Connection
relationships are preserved.

Nudging

� To move one or more selected elements one pixel at a time:

• Hold down the COMMAND key and press one of the arrow keys.

Finding Marten elements

The Edit menu’s Find command opens a Find dialog that lets you search for Marten
elements, definitions, and instances of text strings.

In general, instructions in Marten documentation assumes that you are using all default
settings in the Preferences dialog. For details on individual settings, see "Preferences"
on page 56.

Holding down the arrow key continuously, results in the
element moving progressively faster.

General Editor usage 52
Using this dialog, you can execute searches (and optional replaces) ranging from the
general to the highly specific. For example, you could:

� Find all occurrences of foo

� Replace all occurrences of the >= primitive with the gte primitive.

� Locate the definition of a class by its name.
The controls on the Find dialog let you specify a search criteria and execute the search.

Find field
Use this field to enter the string that identifies the target.

Replace field
Optionally, you can use this field to enter a replacement string. This lets you replace
operation or definition names.

Search for dropdown and Types check boxes
You use the Search for dropdown to choose the basic type of element you want to
search for and the Types check boxes to further narrow your search. The Types check
boxes displayed depend on the Search for option currently selected.

Choosing Operations from the Search for dropdown restricts the search to elements
found in a Case window. When you choose this option, you can use the Types check
boxes to further restrict your search to the following operation types:

Simple/Primitive Local/Evaluate Constant/Match

Persistent Instance Get

Set External

General Editor usage 53
A type definition can be a class definition, method definition, default attribute
definition, or definition of a persistent. Choosing Definitions from the Search for
dropdown restricts the search to the following definition types:

If you choose Text in Attribute, the search will return all attributes of type string in
all existing instances. No Types check boxes are displayed, and Project is the only
value selectable in the Search in dropdown.

If you choose Text in Window, the search will return Text windows with matching
strings. No Types check boxes are displayed, Project is the only value selectable in
the Search in dropdown, and the Close Windows option is not available.

Search in dropdown
This radio set lets you restrict your search to the following locations:

Current Method If the front window is a Methods window with one
selected method or is a Case window of a method, the
search is restricted to operations in cases of that
method.

Current Class If the front window is a Classes window with one
selected class, an Attributes window, or a Case
window of a class method, the search is restricted to
operations or definitions in that class.

Current Section Restricts the search to the section that owns the
frontmost window, or, if the frontmost window is a
Sections window with one selected section, to that
section.

Project The search is across the entire project.

Options check boxes
You can use the following options when executing a search:

Ignore Upper/Lower If this box is unchecked, the search does not
distinguish between lower and upper case.
Otherwise, matching is case sensitive.

Match Pattern If this box is checked, the Search and Set strings are
treated as patterns. The asterisk (*) and question
mark (?) characters have special status. A string
matches the match pattern if the pattern can be made
identical to it by substituting

� A string for each asterisk
� A single character for each question mark.

The string substituted for an asterisk or question mark
is called its match value. If there is more than one set
of substitute strings that satisfy these conditions, the
set chosen is the one that minimizes the lengths of
substitute strings for occurrences of the asterisk,
starting from the left of the match pattern.

Methods Classes Attributes Persistents

General Editor usage 54
In searching for operations, a match succeeds only if
the search pattern matches the entire name of an
operation. In searching for definitions, a match
succeeds only if the search pattern matches the entire
name of a defined program element. In searching for
text attributes, a match succeeds only if the search
pattern matches the entire value of an attribute. In
searching Text windows, however, matching
succeeds if any substring of the window contents
matches the search pattern.

Close Windows If this box is checked, selecting the Find Again menu
command closes the last window opened by
searching, if it is still the top window and does not
contain the next item found.

Cancel
This button dismisses the dialog without performing a search.

Retain
Dismisses the dialog without performing a search, but any changes made in the search
criteria are saved.

Find
Clicking the Find button closes the dialog and starts a search for an item that satisfies
the search criteria. If such an item is found, the window containing it is opened with the
item selected. Otherwise a warning beep sounds and an appropriate message is
generated. The Find function can be interrupted by pressing

3

3Editor menus and menu commands
� The System Menu
� The File menu
� The Edit menu

� The Operations menu
� The Controls menu
� The Window menu
� The Tools menu

This chapter provides a comprehensive description of the Marten Editor’s menus and
menu commands.

The System Menu

The System menu provides a set of standard application functions:

� About Marten
� Preferences
� Hide Marten
� Hide Others
� Show All
� Quit Marten

About Marten
Displays information about Marten, such as the version number and date of release. In
addition, it displays a list of credits and the copyright notice.

This chapter does not cover the Run menu which provides interpreter functionality.
For details on those menu commands, see "Using the testing and debugging facilities"
on page 9.

Editor menus and menu commands 56
Preferences
Invokes a Preferences dialog that lets you specify settings that apply across the Marten
application.

The preferences available are as follows:

Always open items in a new window
When enabled, double-clicking will always open a new editor window. When disabled,
editors open in the same window in a manner similar to a web browser.

Open Project Window at Launch
When enabled (Default), the Projects Window will always be opened when starting
Marten. When disabled, Marten will launch without displaying a Projects Window and
to open it, you have to use the File menu New Projects Window command.

Show alternate line highlights
When enabled (Default), any editor windows have a faint banding displayed in the
background of each window allowing users to see "rows" more easily. When disabled,
all editor windows have a solid white background.

Editor menus and menu commands 57
Case Dock Position
The Case Window always has a dock in which the case icons are displayed. This dock
can be positioned against the left side (Default), top, bottom, or right side.

Export Mode
When Runtime is selected, all C code will be exported in the Runtime format and
conversely when "Inline" is selected, all C code will be exported in the Inline format.
The Runtime format is more forgiving of undefined symbols but will run slower. The
Inline format requires all symbols to be defined but will will run much faster and is the
recommended export format.

Services
Lets you select another application to provide a context-dependent service. For
example, if text is selected, the text editor BBEdit could open a new document
containing the selected text. This is a service that BBEdit provides and the service may
be selected by navigating the Services submenus to the "Open Selection" command of
BBEdit.

After the selection, a new BBEdit document opens, containing the selected text.

Hide Marten
Hides the main Marten editor window and any other open Marten windows or dialogs.

Hide Others
Hides windows or dialogs of other applications, leaving only the Marten application
visible.

Editor menus and menu commands 58
Show All
Displays the Marten application if it is hidden, or if all other applications are hidden,
displays their windows and dialogs.

Quit Marten
Quits the Editor/Interpreter application. If the project or any sections have been
altered, you are prompted with the choice to save them.

The File menu

The File menu provides file management, printer options, and the option to exit
Marten.

It contains the following commands:

� New
� Open
� Close
� Save
� Save As
� Revert
� Import
� Export
� Update
� Page Setup
� Print

New
The File menu New Projects Window command opens a Projects window listing all
open projects.

Open
The File menu Open command opens an existing project or section. If a section is
opened, it is added to the selected project or if no project is selected, a new project will
be created.

Close
The File menu Close command closes the active window.

For general information on operations on sections and projects, see "Creating a new
project" on page 41.

For general information on operations on sections and projects, see "Creating a new
project" on page 41.

Editor menus and menu commands 59
Save
If a Projects window is the active window, the File menu Save command saves the
selected projects. If the Sections window of a project is open, the selected sections will
be saved and if any other window type is active, the owning section is saved.

If the project or any contained sections have not yet been saved, a Save As dialog box
prompts you to provide a name and a location. ALWAYS use the supplied name.
Sections and projects are named in the editor, NOT by save dialogs. If Cancel is
selected from any of these dialogs, the whole process is halted, and any remaining
sections are not saved.

Saving sections and projects involves single files. Specifically, saving a project does
not automatically save any dirty section files.

Save As
The File menu Save As command makes copies of one or more selected sections or
projects.

If the Projects window is frontmost, the saved projects are those whose icons are
selected.

If the Sections window is frontmost, the saved sections are those whose icons are
selected. If a Classes, Attributes, Methods, Case or Persistents window is the frontmost
window, then the selected section is the section to which that window belongs.

Revert
 The File menu Revert... command is currently not supported.

Import
The Marten editor can import (to a degree) Pictorius Prograph CPX section files, a
software development product that first introduced graphical programming to the
Macintosh computer. To import a CPX section file into a project, select the Import
command from the File menu. Use the Open File dialog to navigate to the CPX files
you wish to import, select them, and press the Open button. The section files will be
translated into Marten sections files which will in turn be added to the project.

The importation process cannot translate all objects within a CPX file. In particular,
Marten does not support the Partition control, external addresses, and external globals.
In addition, Marten does not represent external procedures in the same manner as
Prograph CPX which often leads to a difference in outputs. When any of these problem
operations occur, they are added to a list which is presented at the end of the import
process. This list is displayed in a window called Problem Items. Double-clicking on
each problem item opens the case where the problematic operation is located, allowing
you to fix the operation. For external procedures, it is recommended that you double-
click the operation and compare the output information for the procedure with the
number of roots of the actual operation.

For more general information on operations on sections and projects, see "Creating a
new project" on page 41.

Editor menus and menu commands 60
In addition, Prograph CPX section files store their universal methods as class methods
of a special class that appears in Marten as the Untitled Class. Methods appearing in
this class should be moved to the section as universals and the class deleted.

It must be made clear that use of the Marten import feature does not guarantee the
ability of importing a CPX section file and there is some risk in attempting it. While
every effort has been made to import such files robustly, it is possible that the import
process could lead to a crash or other abnormal behavior of the Marten application. You
use this feature at your own risk.

Export
While it is recommended that you create your applications using the Update command,
knowledgeable C programmers may wish to create applications in the C programming
language for better performance. If you wish to do this, first make sure your application
runs acceptably in the Marten environment. A Marten C application runs much faster
than a Marten project application but is much less forgiving of any programming errors.
Next, select the project item and all the section items and then select the Export
command from the File menu. The project and sections will be exported in the C
language, suitable for compiling and linking against the Marten frameworks.

Update
The File menu Update command converts the project application into a double-
clickable standalone application. First make sure your application runs acceptably in
the Marten environment, then select the Update command. All the required elements
of your project (such as bundles, code, and resources) will be copied into your project
application. After this process completes, your project application may now be used as
a standalone application.

Page Setup
The File menu Page Setup command is currently not supported.

Print
The File menu Print command is currently not supported.

The Edit menu

In general, Edit menu items apply to the selected elements in the front window. Marten
icons and associated text can each be selected separately.

The Edit menu contains the following commands:

� Undo
� Redo
� Cut
� Copy
� Paste
� Clear

Editor menus and menu commands 61
� Duplicate
� Select All
� Move To Section
� Propagate Attribute
� Find
� Spelling
� Special Characters

Undo
The Edit menu Undo command is only supported for text edits.

Redo
The Edit menu Redo command is only supported for text edits.

Cut
The Edit menu Cut command copies selected elements and all dependent elements
into the Object clipboard, similar to the Macintosh clipboard but internal to Marten.
These are then deleted from their current locations. Cut is equivalent to Copy followed
by Clear.

This command is available whenever a Marten element is selected.

Copy
The Edit menu Copy command copies selected elements and all dependent elements
into the Object clipboard, similar to the Macintosh clipboard but internal to Marten.
The content of the Object clipboard is retained until the next Copy or Cut operation.

This command is available whenever a Marten element is selected.

Paste
The Edit menu Paste command copies the contents of the Object clipboard into the
active window. If there is a conflict between the name of an element in the window
and the name of one of the newly-pasted elements, the pasted element is renamed.

This command is available whenever the Object clipboard contains a Marten element
and the type of element on the clipboard is a valid element for the front window.

Clear
The Edit menu Clear command deletes selected Marten elements or if text is selected
for editing, deletes the selected text.

This command is available whenever one or more Marten elements are selected or text
is selected.

Editor menus and menu commands 62
Duplicate
The Edit menu Duplicate command makes copies of selected Marten elements in the
front window. It applies only to Marten elements and not to text. It is equivalent to
Copy followed by Paste.

The copied elements are positioned slightly offset from the originals and renamed to
avoid name conflicts. For example, a duplicated myMethod is renamed to myMethod
#, and so on.

This command is available whenever a Marten element is selected.

Select All
The Edit menu Select All command selects all elements in the active window, or, if
text has been selected for editing, selects all the text.

This command is available whenever the active window contains one or more
elements.

Move To Section
The Edit menu Move To Section command moves selected classes, persistents or
Universal methods to a different section. A dialog box lets you select the section to
which the selected element(s) is to be moved. The selected classes, persistents or
universal methods are deleted from the original section, and moved to the destination
section.

Propagate Attribute
The Edit menu Propagate Attribute command copies the default values of the
selected attributes of a class to the corresponding attributes of all its descendants.

Find
The Edit menu Find submenu contains commands that allow you to open a Find/
Replace dialog that lets you search for Marten operations, definitions, and text. This
command is available whenever an editor window is active in the Marten Editor. The
Find submenu also contains other commands that let you find the previous or next
occurrence of the query text and let you replace a single occurrence or all occurrences
of the query text with the replacement text.

Spelling
The commands of the Edit menu Spelling submenu are currently not supported.

Special Characters
Provides the standard Mac OS X Special Characters standard feature, allowing you to
use non-standard characters in Marten text.

For a detailed description of how to find Marten operations, definitions, and settings,
see "Finding Marten elements" on page 51.

Editor menus and menu commands 63
The Operations menu

The Operations menu provides a number of commands for transforming operations.

The commands available from the Operations menu differ if you have the OPTION
key or SHIFT and OPTION keys depressed when you click on the Operations menu,
as follows:

.

Method
A simple Marten operation generally represents a method. The Operations menu
Method command changes a selected operation to a Method operation.

Base Operations menu OPTION key variation SHIFT-OPTION variation

Method Primitive External Procedure

Constant External Constant

Match External Match

Persistent External Global

Instance External Address

Get External Get

Set External Set

Local

Evaluate

Run Mode

Operations to Local

Local to Method

Tidy Operations

Resize Operations Reset Operations

Generally, if an operation has a control and is transformed by
one of the above menu items, its control is retained. Exceptions
to this will be explicitly noted.

For background information, see "Simple" on page 20.

Editor menus and menu commands 64
Primitive
This command is only available from the Operations menu when the OPTION key is
depressed. It changes a selected operation to a Primitive operation.

External Procedure
This command is only available from the Operations menu when the SHIFT and
OPTION keys are depressed. It changes a selected operation to an External Procedure
operation.

Constant
Selecting an operation and choosing the Operations menu’s Constant command
changes the operation to a Constant operation. Any associated control is removed.

External Constant
This command is only available from the Operations menu when the OPTION key is
depressed. It changes the operation to an External Constant operation. Any associated
control is removed.

Match
Selecting an operation and choosing the Operations menu’s Match command changes
the operation to a Match operation. If the operation has no control, a Next Case on
Failure control is attached.

External Match
This command is only available from the Operations menu when the OPTION key is
depressed. It changes the operation to an External Match operation. If the operation
has no control, a Next Case on Failure control is attached.

Persistent
Selecting an operation and choosing the Operations menu’s Persistent command
changes the operation to a Persistent operation.

For background information, see "Simple" on page 20.

For background information, see "External operations" on page 25.

For background information, see "Constant operations" on page 20.

For background information, see "External operations" on page 25.

For background information, see "Match operations" on page 21.

For background information, see "External operations" on page 25.

For background information, see "Persistent operations" on page 21.

Editor menus and menu commands 65
External Global
This command is only available from the Operations menu when the OPTION key is
depressed and is currently unimplemented

Instance
The effect of the Operations menu’s Instance command depends on the selection as
follows:

� If the selected element is an operation, it becomes an Instance generator.
� If the selected element is a method in a class-based Methods window, it becomes

an Constructor method.

External Address
This command is only available from the Operations menu when the OPTION key is
depressed and is currently unimplemented. An External Get operation prefaced with
the ampersand character (&) currently serves to access the external address of a
structure.

Get
The Operations menu’s Get command converts a selected operation to a Get attribute-
value operation.

External Get
 This command is only available from the Operations menu when the OPTION key is
depressed.It changes the operation to anExternal Get Field operation.

Set
The Operations menu’s Set command converts a selected operation to a Set attribute-
value operation.

External Set
This command is only available from the Operations menu when the OPTION key is
depressed. It changes the operation to an External Set Field operation.

For background information, see "External operations" on page 25.

For more information, see "Instance operations" on page 21.

For background information, see "External operations" on page 25.

For more information, see "Get operations" on page 22.

For background information, see "External operations" on page 25.

For background information, see "External operations" on page 25.

Editor menus and menu commands 66
Local
Selecting an operation in a Case window and choosing the Operations menu’s Local
command changes the operation to a Local operation, which can then be opened and
defined.

Evaluate
Selecting an operation and choosing the Operations menu’s Evaluate command
changes the operation to an Evaluate operation.

Run Mode
The commands of the Operations menu Run Mode submenu allow you to designate an
operation as Normal (the default), as Skipped (the operation will never be executed,
either in the Interpreter or Standalone), or Debug (the operation will ONLY be
executed in the Interpreter).

Operations to Local
Selecting a group of operations and choosing the Operations menu’s Operations to
Local command transforms the group of selected operations into a Local.

Local to Method
Selecting a single selected Local operation and choosing the Operations menu’s Local
to Method command transforms the Local into a Universal or Class method,
depending on the format of the name you provide. Since Locals are available for use
only within the method to which they belong, the Local to Method command provides
a way to generalize the method if you find that a particular Local is useful enough that
other methods also need to call it.

Two things happen when you choose Local to Method:

� The local operation is changed into a method-calling operation.
� The information inside the local method is put into a universal or class method,

depending on the name you provide.

When you select Local to Method from the Operations menu a dialog opens
displaying a suggested name for the new operation (and its corresponding method). If
the old Local belonged to a universal method, the suggested name will be the name of
the Local; otherwise, the suggested name is the name of the Local preceded by two
slashes (//). Regardless of the type of method to which the original Local belonged,
you can change it into either a Universal method (by putting no slash (/) before the

For background information, see "Locals" on page 24.

For background information, see "Evaluate operations" on page 24.

For background information, see "Locals" on page 24.

Editor menus and menu commands 67
name), or into a Class method (by putting two slashes (//) before the method name), or
typing a class name and one slash before the method name.

If naming a Universal method, a dialog box opens prompting you to select a section for
the Universal method. In this dialog, if Cancel is clicked, the Local to Method dialog
opens.

The Local to Method dialog box controls are discussed in the following sections.

Name field
The name of the new operation.

Cancel button
If clicked, this button of the Local to Method dialog box closes the dialog box without
performing the conversion.

OK button
When this button of the Local to Method dialog is clicked, if the name is not a data-
determined reference, the Local is transformed into a simple operation and a
corresponding new universal method is created in the appropriate place. In other
words, if the name does not have a leading slash, the method created is a universal
method in the current section.

If the name has an embedded slash, in the form classC/methodM, the method methodM
is created in class classC.

If the name is a data-determined reference (in the form /name), a second dialog replaces
the first, with a scrolling list of names of classes. At most one class can be selected in
this list. The new method is placed in that class.

The dialog box is comprised of the Select button and the Cancel button.

Select button
If a class is selected, clicking this button closes the dialog, transforms the Local into a
simple operation with the specified name, and creates a corresponding method in the
selected class with cases identical to those of the original Local.

Double-clicking an item in the scroll list is equivalent to first selecting it and then
clicking the Select button.

Cancel button
Clicking this button dismisses the dialog without transforming the Local or creating a
method.

In each of these situations, if the required new method cannot be created because its
name would conflict with that of an existing method, the Local is not transformed. An
error message is displayed, followed by a return to the Local to Method window.

For details on the slash convention with method names, see "Operation names" on
page 26.

For more information, see "Locals" on page 24 and "Local to Method" on page 66.

Editor menus and menu commands 68
Tidy Operations
The Operations menu’s Tidy Operations command reorders the icons in a window,
aligning them in horizontal rows and spacing them to avoid overlapping.

Resize Operations
The Operations menu Resize Operations command resizes the icons in a window to
display them at the best setting.

Reset Operations
This command is only available from the Operations menu when the SHIFT keys is
depressed. It resets the icons in a window.

The Controls menu

Marten operations, roots, terminals, and the output bar are annotated by items on the
Controls menu.

Some of the items on the Controls menu apply to selected operations, some to selected
roots and terminals, some to either). With that in mind, the commands on the Controls
menu fall into the following categories:

� Control menu commands that only apply to operations
� Control menu commands that affect roots and terminals
� A menu command for toggling activation conditions
� Control menu commands for controls on operations and the output bar.

Control menu commands that only apply to operations
Some Control menu commands apply only to selected operations. They include:

� Simple
� Super
� Repeat.

Simple
The effect of the Controls menu Simple command depends on the selection, as
follows:

� If the selected element is a root (or terminal), the Simple menu command
transforms it into a simple root (or terminal).

� If the selected element is an operation, the Simple menu command removes any
existing control from the operation and transforms all its roots (or terminals) into

For information on the role of Controls in the Marten language, see "Controls" on page
29.

For information on root and terminal annotations, see "Inject" on page 69.

Editor menus and menu commands 69
simple roots (or terminals). It does not change the type of the operation itself (Get
or Set for example).

Super
The Controls menu Super command applies only to selected operations. It transforms
an operation into a Super operation. Its name is automatically changed, if necessary,
into the form //name in order to prevent potential infinite recursion. The default arity
is also automatically assigned.

Repeat
The Controls menu Repeat command applies only to selected operations. It
transforms an operation into a Repeat multiplex.

Control menu commands that affect roots and terminals
Some Control menu commands apply to roots and terminals of selected operations.
They include:

� Inject
� List
� Loop

Inject
When a terminal is selected, the Controls menu Inject command transforms the
terminal into an Inject terminal. Since injects cannot have names, if the operation has
a name, it is removed.

When an operation is selected, choosing Inject adds the new Inject terminal to the right
of any existing terminals.

Note: An operation can only have one inject terminal.

List
The Controls menu List command transforms a terminal (or root) into a List terminal
(or root). The associated operation becomes a Repeat multiplex.

Loop
The Controls menu Loop command is currently disabled. To create a loop where a
root of an operation is connected back to a terminal of the same operation, connect the
root with the terminal as if you were creating a datalink.

For background information, see "Super operations" on page 23.

For background information, see "Repeat annotations" on page 29.

For background information, see "List annotations" on page 28 and "Repeat
annotations" on page 29.

Editor menus and menu commands 70
The associated operation becomes a Repeat multiplex.

A menu command for toggling activation conditions
Each control described under Control menu commands for controls on operations and
the output bar has an activation condition. Activation conditions can be changed using
the Toggle logic menu command.

Reverse menu command
The Controls menu Reverse command toggles the activation condition of the control
on a selected operation. Applying this item to an operation with no control adds a
Continue on Failure control (the default control for an operation, Continue on Success,
does not have a control icon).

Control menu commands for controls on operations and the output bar
The Next Case, Continue, Terminate, Finish, and Fail menu commands can be
applied to selected operations and to the output bar. The general rules for these controls
are:

� If an operation already has a control, and the control is changed by selecting the
appropriate menu item, the activation condition of the original control is retained
in the new one.

� If the operation has no control, and a menu item is applied to add a control to it, the
new control has the default on Failure activation condition.

Next Case
The Controls menu Next Case command appends a Next Case control to an operation.

For background information, see "Loop annotations" on page 29 and "Repeat
annotations" on page 29.

For background information on activation conditions, see "Success, failure, and error"
on page 33.

For background information on activation conditions, see "Success, failure, and
error" on page 33.

For background information, see "Next Case control" on page 30.

Editor menus and menu commands 71
Continue
The Controls menu Continue command appends a Continue control to an operation.

Terminate
The Controls menu Terminate command appends a Terminate to an operation.

Finish
The Controls menu Finish command appends a Finish control to an operation.

Fail
The Controls menu Fail command appends a Fail control to an operation.

The Window menu

The Window menu provides a set of utilities for working with Marten editor windows.
The Window menu has the following commands:

� Information

� Sections

� Universal Methods

� Classes

� Persistents

� Methods

� Attributes (Class Attributes if the OPTION key is depressed)

� Errors

� Stack

� Remember Windows (Restore Windows if the OPTION key is depressed)

� Minimize Window (Minimize All Windows if the OPTION key is depressed)
� Bring All to Front (Arrange in Front if the OPTION key is depressed)

In addition, the Window menu maintains a list of all open or minimized windows in
the project. They are positioned below the menu commands. Selecting a name from
this list, makes that window the front window.

Information
Invokes the Information window, a lookup tool that provides information on Marten
elements.

For background information, see "Continue control" on page 30.

For background information, see "Terminate control" on page 31.

For background information, see "Finish control" on page 31.

For background information, see "Fail control" on page 32.

Editor menus and menu commands 72
It shows a smart list of classes, universals, persistents, and other application elements,
and allows you to perform a lookup on element names.

For example, if you typed SetRect (the name of an External procedure) in the
Information text box and started a search (RETURN key), the default list would be
replaced with a list information items relevant to that External Procedure. That would
include a documentation icon which when double-clicked, would return a list of input
and output C language types, and a list of all cases that use SetRect.

Editor menus and menu commands 73
Sections
Choosing Sections from the Window menu opens the Sections of projectname
window.

Universal Methods
Choosing Universal Methods from the Window menu opens a dialog prompting you
to select a section. When you select a section, the Universal Methods window of that
section opens.

Classes
Choosing Classes from the Window menu opens a dialog prompting you to select a
section. When you select a section, the Classes window of that section opens.

Persistents
Choosing Persistents from the Windows menu opens a dialog prompting you to select
a section. When you select a section, the Persistents window of that section opens.

Methods
Choosing Methods from the Windows menu prompts you to choose from a list of
classes. When you choose a class, the Methods window for that class opens.

Attributes
Choosing Attributes from the Windows menu prompts you to choose from a list of
classes. When you choose a class, the Attributes window for that class opens.

For background information on sections, see "Projects and sections" on page 9. For
information on how to work with this editor window, see "The Sections window" on
page 80.

For background information on universal methods, see "Universal methods" on page
16. For information on using this editor windows, see "The Universal Methods
window" on page 84.

For information on using this editor window, see "The Classes window" on page 87.

For background information on persistents, see "Persistents" on page 34. For
information on using the respective editor windows, see "The Persistents window" on
page 91.

For background information on methods, see "Class methods" on page 15. For
information on using the respective editor windows, see "The Class Methods window"
on page 93.

For background information on attributes, see "Attributes" on page 13. For
information on using the respective editor windows, see "The Class Attributes and
Instance Attributes windows" on page 95.

Editor menus and menu commands 74
Class Attributes
This command is only available from the Operations menu when the OPTION key is
depressed. It prompts you choose from a list of classes. When you choose a class, the
Class Attributes window for that class opens.

Errors
Errors can occur when running your project in the interpreter. Generally an error forces
the interpreter to halt with a warning message displayed. To potentially find out more
about the problem, use the Errors command to display more detailed error
information.

Stack
Choosing Stack from the Windows menu prompts for a process to be selected. When
you choose a process, the Stack window for that process opens.

Remember Windows
The Remember command records the locations and sizes of the edit windows
currently displayed.

Restore Windows
The Restore command is only available from the Window menu when the OPTION
key is depressed. It restores the edit windows last recorded using the Remember
command.

Minimize Window
The Minimize Window command minimizes the frontmost window.

Minimize All Windows
The Minimize All Windows command is only available when the OPTION key is
depressed. It minimizes all open Marten editor windows.

Bring All to Front
The Bring All to Front command brings all open Marten windows in front of other
application windows.

For background information on attributes, see "Attributes" on page 13. For
information on using the respective editor windows, see "The Class Attributes and
Instance Attributes windows" on page 95.

 For information on using the Stack window, see "Stack window" on page 18.

Editor menus and menu commands 75
Arrange in Front
The Arrange in Front command is only available when the OPTION key is depressed.
It stacks all Marten windows, one on top of the other, with a slight offset,
beginning in the upper left hand corner of the screen and descending down and
to the right.

The Tools menu

The Tools menu contains menu items with the names of any Tools available in any
sections currently included in the project. Choosing such a menu item executes the
associated method, which may in turn present dialogs or menus.

For background information on tools, see "Tool type method" on page 16.

Editor menus and menu commands 76

4

4Editor windows
� The Projects window
� The Sections window

� The Universal Methods window
� The Classes window

� The Persistents window
� The Class Methods window

� The Class Attributes and Instance Attributes windows
� The Case window
� The Value window

The Marten editor provides an editor window for each of the major language elements
and an editor for working with values. This chapter describes howw to use the editor
windows as you create and modify your Marten code.

The Projects window

Projects are documents stored on disk as files, and their contents can be viewed in
Marten windows. The name of a project is the same as the name of its corresponding
disk file.

The Projects window provides a view of your currently active projects.

This chapter does not cover features common to all windows nor does it cover general
Marten Editor operations. For information on general features, see "General Editor
usage" on page 35. For specific information on common window features, see
"Common operations on windows" on page 45.

For background information on sections and related project tasks, see "Projects and
sections" on page 9.

Editor windows 78
Project windows tasks include:

� Opening the Sections window

� Starting a new project
� Removing a section from the project
� Accessing the contents of a section

Opening the Projects window
A project window is opened automatically when Marten is launched.

� To open the Projects window:

• From the File menu, choose the New Projects Window command.

The Projects window opens. It lists all currently active projects and provides access to
each project’s sections, libraries, and resources.

Starting a new project
The projects window is used to provide access to all of your active projects.

� To start a new project:

1. If not already open, open the Projects window. For details, see "Opening the
Projects window" on page 78.

2. COMMAND-click in any unoccupied space in the Project window. Alternatively
CONTROL-click ("right-click") in the white space of the Projects window and
select the New Project command from the contextual menu.

A dialog prompts you for the name of the project application you wish to create.

3. Enter the name.

A new Project item is created in the Projects window with the project application
name selected.

For information on working with sections, see "The Sections window" on page 80. For
information on working with resources and libraries, see the Marten Primitives
Reference.

Editor windows 79
4. Modify the name for the project and press RETURN.

Removing a project from the Projects window
Once development is complete on a project, you can remove it from the Projects
window.

� To delete a project from the Projects window:

1. If not already open, open the Project window. For details, see "Opening the
Projects window" on page 78.

2. Try one of the following:

� Select the project to be deleted and press the DELETE key.

� Click on the project to be deleted with the CONTROL key held down ("right-
click"). A contextual menu opens. Select the Clear command from the menu.

� Select the section to be deleted, and from the Edit menu choose Clear.

Accessing the contents of a project
The Projects window provides access to the highest level elements of a Marten
application.

For details on working with projects components, see "Accessing the contents of a
project" on page 79.

Note that the file is not deleted from the disk; only from the
project. Use standard Macintosh functions to delete the project
from disk.

Editor windows 80
You access the projects’s contents as follows:

� Double-click the Libraries icon to open the Libraries window for the project

� Double-click the Sections icon to open the Sections window for the section
� Double-click the Resources icon to open the Resources window for the section.

The Sections window

Like a project, a section is a document. It is stored on disk as a file, and its contents
can be viewed in Marten windows. The name of a section is the same as the name of
its corresponding disk file.

The Sections window provides access to Marten source code at the highest level of
organizaton.

For information on working with libraries and resources, see the Marten Primitives
Reference. For information on working with these editors, see ??? XREF:

For background information on sections, see "Projects and sections" on page 9.

Editor windows 81
Each section has three associated icons that let you access the highest level components
of a section.

Sections windows tasks include:

� Opening the Sections window

� Creating a new section
� Removing a section from the project
� Adding an existing section to the project
� Renaming sections
� Accessing the contents of a section

Editor windows 82
Opening the Sections window

� To open the Sections window, use one of the following techniques:

• In the Projects window, double-click the Sections icon for a project.

• From the Window menu, choose Sections.

The sections window opens. It lists all existing sections in the current project

Creating a new section
You create a new section to develop a new set of classes, universal methods, and
persistent, or to reorganize some existing code.

� To create a new section in the Sections window:

1. If not already open, open the project’s Section window. For details, see "Opening
the Sections window" on page 82.

2. COMMAND-click in any unoccupied space in the Sections window.

A new Section icon with a default name of Untitled Section is displayed.

3. To name the section, type a new name in for the selected text.

4. To save the section, choose Save command from the File menu. Navigate to the
location where you wish to save the section and click Save.

For more information, see "The Projects window" on page 77.

If you are creating classes, universals, or persistents from scratch, icons in the Sections
window provide access to the respective editor windows. For information on working
with these editors, see the following sections:

� "The Classes window" on page 87
� "The Universal Methods window" on page 84
� "The Persistents window" on page 91.

Alternatively, CONTROL-click (Right-click) in any
unoccupied space in the Sections window and select the
New Section command from the contextual menu.

A disk file is not created until a section is saved. Because the
section file name is required to be the section name, you should
be sure to name your section before saving it.

Editor windows 83
Whenever possible, source code should be organized so that sections are reusable; self-
contained code that can be added to projects as needed.

Removing a section from the project
Sections can only be removed using the Sections window.

� To delete a section from the project, use one of the following techniques:

1. If not already open, open the project’s Section window. For details, see "Opening
the Sections window" on page 82.

2. Try one of the following:

� Select the section to be deleted and press the DELETE key.
� COMMAND-OPTION-SHIFT-click the section item ("Slam-Click").
� Select the section to be deleted, and from the Edit menu choose Clear.

Adding an existing section to the project
If you organize your sections as functionally-related, self-contained units, you can
reuse sections in multiple projects.

� To add an existing section to a project:

1. If not already open, open the project’s Section window.

2. From the File menu choose Open. A Choose Object dialog window opens.

3. Navigate to where the section you wish to add is located.

4. Select the section and click the Choose button.

If you are creating classes, universals, or persistents from scratch, icons in the Sections
window provide access to the respective editor windows. For information on working
with these editors, see the following sections:

� "The Classes window" on page 87
� "The Universal Methods window" on page 84
� "The Persistents window" on page 91.

Note that the file is not deleted from the disk; only from the
project. Use standard Macintosh functions to delete a section
from disk.

For details, see "Opening the Sections window" on page 82.

Editor windows 84
Renaming sections

� To rename a section:

1. If not already open, open the project’s Section window.

2. Select the section to be renamed, then click the name of the section. An edit text
box will now frame the name with the cursor placed in the text of the name.

3. Type the new name for the section and select the Save As command from the File
menu.

A Save dialog opens.

4. Navigate to where the file should be saved and click the Save button. You must
accept the suggested name to keep the section file name and the section name
synchronized.

Accessing the contents of a section
You access the section’s contents as follows:

� Double-click the Classes icon to open the Classes window

� Double-click Universal Methods icon to open the Universal Methods
� Double-click the Persistents icon to open the Persistents window.

The Universal Methods window

There are two general strategies for storing universal methods in a section:

For details, see "Opening the Sections window" on page 82.

For information on working with the Classes, Universal Methods, and Persistents
editor windows, see the following sections:

� "The Classes window" on page 87
� "The Universal Methods window" on page 84
� "The Persistents window" on page 91.

Editor windows 85
� The universal methods in a section are functionally related to the classes and
persistents in the section

� General use universal methods, or universal intended for use with one or more
sections in the project, can be stored in a section dedicated to storing either general
use universals or general use components, in general.

The Universal Methods window displays the universal methods in a section.

Universal Methods windows tasks include:

� Opening a Universal Methods window
� Creating a universal method
� Renaming a universal method
� Deleting a universal method
� Accessing universal method contents.

Opening a Universal Methods window

� To open a Universal Methods Window, use one of the following techniques:

• In a Sections window, double-click the Universal Methods part of a Section icon.

• From the Windows menu choose Universal Methods, then select the section
containing the universal methods you wish to view.

Creating a universal method
You can only create Universal methods in a Universal Methods window.

For background information on universal methods, see "Universal methods" on page
16.

Editor windows 86
� To create a Universal Method:

1. If not already open, open a Sections window.

2. COMMAND-click in any unoccupied space in the Universal Methods window.

This creates a new universal method icon with the name Untitled Universal.

3. Type a name for the universal method and press ENTER.

Note: If there is an existing universal method for which you have not overridden the
default name, the new universal method is named Untitled Universal #1.
Large integers are used if necessary.

All methods must have names. The Marten Editor enforces this. The name of a
universal method must be distinct from the name of all other universal methods in the
project.

Renaming a universal method

� To change the name of a Universal Method:

1. If not already open, open the Universal Methods window for the section containing
the method to be renamed. For details, see "Opening a Universal Methods
window" on page 85.

2. Click on the name of the universal method.

The name is selected for editing.

Note: Clicking a second time on the name places an insertion point at the position
of the click. Standard text-editing functionality such as arrow keys and
backspace, are available.

3. Type a new name and press ENTER.

Deleting a universal method
Universal methods can only be deleted using the Universal Methods for the section
containing the universal method.

For details, see "Opening a Universal Methods window" on page 85.

Alternatively, CONTROL-click (Right-click) in any
unoccupied space in the Universal Methods window and
select the New Universal Method command from the
contextual menu.

Once you have created a universal method, you can open a Case window for the
purpose of defining the method. For details, see "The Case window" on page 98.

Editor windows 87
� To delete a universal method, use one of the following techniques:

1. If not already open, open a Universal Methods window.

2. Select the Universal method to be deleted and try one of the following:

� Press the DELETE key.

� Holding down the COMMAND-OPTION-SHIFT keys, click the method item
("Slam-Click")

� From the Edit menu choose Clear.

Any open Case windows of the deleted method are automatically closed.

Accessing universal method contents
The icons in a Universal Methods window let you open the cases of the associated
methods.

� To open a case window on the first case of a universal method:

Double-click a universal method icon.

The Classes window

A Classes window displays all the classes in a section.

The Classes window provides functions for working at the class level and lets you
access the methods and attributes of each class.

Classes window tasks and relevant information include:

� Opening a Classes window
� Creating a class
� About names for classes
� Deleting a class
� Creating subclasses; assigning a parent to a class

For details, see "Opening a Universal Methods window" on page 85.

For details on working with cases of universal methods, see "The Case window" on
page 98.

For background information, see "Classes" on page 11.

Editor windows 88
� Orphaning a child class
� Accessing the attributes and methods of a class.

Opening a Classes window

� To open a Classes window, use one of the following techniques:

• In a Sections window, double-click the classes part of a Section icon.

• From the Windows menu, choose Classes then select the section containing the
classes to be displayed.

Creating a class

� To create a class:

1. If not already open, open the Classes window of the section in which you want to
create a class. For details, see "Opening a Classes window" on page 88.

2. COMMAND-click in any unoccupied space in the Classes window.

This creates a new Class item with the name Untitled Class. The name is selected
for editing.

3. Type a name for the class and press ENTER.

Note: If there are classes for which you have not overridden the default name, the
class is named Untitled Class#1 and large integers are used as necessary to
account for multiple classes for which the default name has not been
overridden.

About names for classes
Classes must have names that are unique across a project. Marten will not allow you
to name a new class with the same name as that of an an existing class.

Deleting a class
Deleting a class has the following effects:

� Any open Attributes, Methods, or Case windows belonging to the deleted class are
closed

� Subclasses of this class have their parent class designation removed
� All attributes inherited from the deleted class are removed from the subclasses.

Alternatively, CONTROL-click (Right-click) in any
unoccupied space in the Class Methods window and select
the New Class command from the contextual menu.

For restrictions on class names, see "About names for classes" on page 88

Editor windows 89
If an instance of the class or any of its descendants exists, the class cannot be deleted.
All such instances must be found and removed before the class can be deleted. To aid
in finding these instances, it may help to delete or add an attribute to the class to see
what sections are dirtied.

� To delete a class:

1. If not already open, open the Classes window of the section in which you want to
delete the class, alias, or shell. For details, see "Opening a Classes window" on
page 88.

2. Use one of the following techniques:

� Select its icon and press the DELETE key
� Select its icon and from the Edit menu choose Clear.
� Holding down the COMMAND-OPTION-SHIFT keys, click the class item

("Slam-Click").

Creating subclasses; assigning a parent to a class
Subclasses are typically created to make a specialized type of the parent class. A
subclass inherits the methods and attributes of its parent class.

Once you have created a class, you can assign it a parent class.

� To assign a parent class to a class:

1. If not already open, open the Classes window of the section in which you want to
create the subclass. For details, see "Opening a Classes window" on page 88.

2. CONTROL-click on the the class to which a parent is to be assigned, choose
Parent Class from the context menu, and then choose the parent class from the
dropdown menu listing all classes in the project.

If you have been using the Interpreter to execute methods or an
entire application, instances of classes may exist if all processes
have not terminated or been aborted. A class cannot be deleted
if an instance exists of the class or of any of its descendants.

For detailed background information on subclassing, see "Classes" on page 11.

You cannot designate a parent to a class if the class already has
an attribute with the same name as that of the intended parent
class.

Editor windows 90
The Class window entry for the class is updated to include the name of the parent class.

Orphaning a child class
You can remove the designated parent of a class to turn the subclass into a stand-alone
class with no ancestors.

� To remove all ancestors of a class:

1. If not already open, open the Classes window of the section in which you want to
create the inheritance link. For details, see "Opening a Classes window" on page
88.

2. CONTROL-click on the the class, choose Parent Class from the context menu,
and then choose None from the dropdown menu.

The name of the parent class is removed from the Class window entry for the class.
Any methods or attributes inherited from the former ancestors of this class are deleted.

Accessing the attributes and methods of a class
A class icon has three components that provide access to the class components:

For details on the differences between Class and Instance attributes, see "Attributes"
on page 13.

Editor windows 91
� To access the Instance attributes of a class:

• Double-click the Instance attributes icon.

� To access the Class methods of a class:

• Double-click the Class methods icon.

� To access the Class attributes of a class:

• Double-click the Class attributes icon.

The Persistents window

This window displays he persistents in a section, provides functions for working with
persistents, and provides access to Value window, where ou can edit persistent values.

Persistents windows tasks and relevant information includes:

� Opening the Persistents window
� Creating a persistent
� About names for persistents
� "Deleting a persistent" on page 92
� Accessing the contents of a persistent
� Persistents in the section file.

Opening the Persistents window

� To open a persistents window, use one of the following techniques:

• From the Window menu, choose Persistents, then select the section that contains
the persistents you want to view.

• In a Sections window, double-click the Persistents icon.

For background information on persistents, see "Persistents" on page 34.

Editor windows 92
Creating a persistent

� To create a persistent:

1. COMMAND-click in any unoccupied space of a Persistents window.

This creates a new Persistent icon with the name Untitled Persistent selected for
editing.

Note: If there are Persistents for which you have not overridden the default name,
the persistent is named Untitled Persistent#1 and large integers are used
as necessary to account for multiple persistents for which the default name
has not been overridden.

2. Type a name for the persistent and press ENTER.

The persistent has an initial value of NULL.

About names for persistents
Persistents names must be unique across the entire project.

Deleting a persistent

� To delete a persistent:

1. If not already open, open the Persistents window of the section in which you want
to delete the persistent. For details, see "Opening the Persistents window" on page
91.

2. Use one of the following techniques:

� Select the persistent icon and press the DELETE key
� Select the persistent icon and from the Edit menu choose Clear.
� Holding down the COMMAND-OPTION-SHIFT keys, click the persistent

icon ("Slam-Click").

Accessing the contents of a persistent
You edit the value of a persistent using the Value window.

� To open a value window for a persistent:

• Double-click the Persistent icon.

Simple values that can be represented textually can also be edited directly in the
Persistents window. For details, see "Selection in general" on page 49.

Alternatively, CONTROL-click (Right-click) in any
unoccupied space in the Persistents window and select the
New Persistent command from the contextual menu.

 For details on editing values in a Value window, see "The Value window" on page 116.

Editor windows 93
Persistents in the section file
When using the Interpreter, changes in a persistent’s value are retained between
executions; the value is saved in the section file. When compiled, however, the
persistent is always initialized to the value it had when the application was last
compiled.

The Class Methods window

This window displays the methods of a class, proivides functions for working at the
class method level, and provides access to the Case window where you can edit class
methods.

Class Methods windows tasks are documented in the following sections. They include:

� Opening the Class Methods window
� Creating a Class method
� About names of class methods
� Deleting a class method
� Changing the type of class method
� Accessing the contents of a class method.

Editor windows 94
Opening the Class Methods window

� To open a Class Methods window, use one of the following techniques:

• In a Classes window, double-click on a Class Methods icon.

• Double-click the right side of an Instance operation for an existing class.

• From the Window menu choose Methods then select the target class in the dialog
box displayed.

Creating a Class method

� To create a class method:

1. COMMAND-click in any unoccupied space of a Class Methods window.

This creates a new Method icon with the name Untitled Method. The name is
selected for editing.

2. Type a name for the class method and press ENTER.

About names of class methods
When naming class methods, keep in mind that class method names must be unique
within the class.

Deleting a class method

� To delete a class method, use one of the following techniques:

• Select the method’s icon and press DELETE.

• Holding down the COMMAND-OPTION-SHIFT keys, click the method item
("Slam-Click").

• Select the method’s icon and from the Edit menu choose Clear.

When you delete a class method, any open Case windows of the method are
automatically closed.

Changing the type of class method
There are four types of class methods:

For background information on working with classes, see "The Classes window"
on page 87.

For background information on Instance operations, see "Instance operations" on
page 21.

Alternatively, CONTROL-click (Right-click) in any
unoccupied space in the Class Methods window and select
the New Method command from the contextual menu.

Editor windows 95
� Constructor type method
� Destructor type method
� Editor type method
� Tool type method.

� To change the type of a clas method:

1. If not already open, open the Class Methods window of the class in which you want
to change a method type. For details, see "Opening the Class Methods window"
on page 94.

2. CONTROL-click on the the method to which an execution type is to be assigned,
choose Install from the context menu, and then choose the type from the dropdown
menu.

Accessing the contents of a class method
You edit your class methods using Case windows:

� To open a Case window on the first case of a class method:

• Double-click a class method icon.

The Class Attributes and Instance Attributes windows

In a class in Marten, attributes can be either class attributes, whose values are the same
across all instances of the class, or instance attributes, whose values can be different in
each instance of the class.

The classes window lets you open a Class Attributes window:

or an Instance Atttributes window:

For background information on method types, see "Methods" on page 14. For
information on changing types of methods and operations, see "The Operations menu"
on page 63.

For background information on cases, see "Cases" on page 17. For details on working
with cases of a method, see "The Case window" on page 98.

Editor windows 96
Both Attribute windows provide the same tasks.

The following topics provide information on the Attributes windows and the tasks you
can perform using this editor. They include:

� Opening an Attributes window
� Creating an attribute
� About names of attributes
� Deleting an attribute
� Reordering attributes
� Clipboard functions on attributes
� Changing the default value of an attribute.

Opening an Attributes window

� To open an Attributes window, use one of the following techniques:

• In a Classes window, double-click on the Instance Attributes or Class Attributes
icon of a class.

• Double-click the left side of an Instance operator for an existing class.

• From the Window menu choose Attributes then select the target class in the dialog
box displayed.

For background information on attributes, see "Attributes" on page 13.

For information on working with classes, see "The Classes window" on page 87.

For background information on Instance generators, see "Instance operations" on
page 21.

Editor windows 97
Creating an attribute

� To create an attribute:

1. COMMAND-click in any unoccupied space of an Instance Attributes or Class
Attributes window. .

This creates a new attribute icon with the name Untitled. The name is selected for
editing.

2. Type a name for the attribute and press ENTER.

The attribute is appended to the bottom of the attributes list and is created with a default
value of NULL.

If you create an attribute in a parent class, it is automatically added to new and existing
subclasses and their instances.

About names of attributes
When naming attributes, keep the following in mind:

� The name of an attribute must be unique across the instance and class attributes of
a class

� The names of inherited attributes cannot be edited.

Deleting an attribute
You cannot delete Inherited attributes from a subclass. You can only delete non-
inherited attributes.

� To delete a non-inherited attribute, use one of the following techniques:

• Select the attribute’s icon and press DELETE.

• Holding down the COMMAND-OPTION-SHIFT keys, click the instance attribute
item ("Slam-Click")

• Select the attribute’s icon then from the Edit menu choose Clear.

Reordering attributes
In general, reordering attributes in an Attributes window has no effect on an
application, however all instances in the project will have their attributes reordered
which will dirty the appropriate sections. You must save those sections or upon
reopening such a section, the attributes of the instances will have incorrect values.

Alternatively, CONTROL-click (Right-click) in any
unoccupied space in the window and select the New
Attribute (or New Class Attribute) command from the
contextual menu.

For information on how to change this value, see "Changing the default value of an
attribute" on page 98.

Editor windows 98
You can reorder by dragging attribute icons up or down in the list. However, note the
following restrictions:

� Dragging occurs in the vertical direction only.
� Inherited attributes cannot be dragged.
� Attributes can only be dragged one at a time, not as a group.

Clipboard functions on attributes
You can cut, copy, paste, or duplicate a selected attribute.

Changing the default value of an attribute
You use the Value window to change the value window of an attribute.

� To open a value window for an attribute:

• Double-click the Attribute icon.

Values that can be represented textually can also be edited directly in a Attribute
window. Like names of Marten elements, these values are stored in an edit text box.
Clicking on a textual attribute value activates the edit text box, selecting all text in the
value. A subsequent click places an insertion point at the position of the click.
Standard text editing keys and clipboard commands are available.

The Case window

A Case window displays a single case of a method. Each case of a method is a dataflow
diagram, representing one of the ways that data can flow through a method.

For details, see "The Edit menu" on page 60.

For details on editing values in a Value window, see "The Value window" on page 116.

For more detailed information on method cases, see "Cases" on page 17.

Editor windows 99
In addition to standard Marten caption components, the window caption consists of a
case indicator and the method name. The case indicator is always in the form n:m,
where m is the total number of cases that make up the method and n is the sequence
number of the case displayed in the current window. If the method is a class method,
the method name is always in the form classname/methodname.

The case window also has a case dock that provides access to cases of a method. For
details on using these items, see "Using cases" on page 114.

The following sections document Case windows tasks and provide relevant
information. They include:

� Opening a Case window
� Using operations in a Case window
� Effect of opening operations by double-clicking
� Working with roots and terminals
� Connecting operations
� Using controls
� Using locals
� Clipboard functions on operations
� Using cases.

Opening a Case window
You can open the first case of a method using method icons in a Universal Methods
window, Class Methods window, or a Case window.

Editor windows 100
� To access a method and open its first Case window:

• Double-click the method icon.

Using operations in a Case window
An operation provides the lowest level of execution in Marten. They are used to call
methods and primitives and to access the values of attributes and persistents. Controls
are added to operations to provide control flow in a Marten application.

The Case windows tasks for working with operations include:

� Creating an operation
� Naming an operation
� Deleting an operation
� Changing the type of an operation.

Creating an operation

� To create an operation in a case window:

• COMMAND-click in unoccupied space.

A simple operation item is displayed with the cursor placed in the editable text box,
allowing you to enter the name of the operation.

Naming an operation

� To make an unnamed icon editable:

• Click the icon to select it, then press RETURN.

A flashing cursor is displayed, allowing you to type a new name for the operation.

� To rename the operation:

• Click once on the text area of the icon to make it editable, type over the old name
and press RETURN.

If Marten recognizes the provided name as that of primitive, method, external
procedure, or class instance, in the current project, it adjust the arity appropriately.

For information on other actions that open Case windows and navigate among cases of
a method, see "Effect of opening operations by double-clicking" on page 101 and
"Using cases" on page 114.

For detailed information on operations, see "Operations" on page 18.

Alternatively, CONTROL-click (Right-click) in any
unoccupied space in the Case window and select the New
Operation command from the contextual menu.

For more information on arity, see "Terminals and roots" on page 19.

Editor windows 101
Deleting an operation
When deleting an operation, keep the following in mind:

� Deleting an operation deletes all its terminals and roots, and any synchro link
linking that operation to another operation operation.

� Deleting a Local operation deletes the associated Local method.
� Input and output bars cannot be deleted.

Changing the type of an operation
You can change the type of an operation by changing its name or by annotating it with
an item from the Operations or Controls menus.

Effect of opening operations by double-clicking
The effect of double-clicking either side of an operation in the bordering non-text area
depends on the type of operation, the kind of method reference made by the name, and
in the case of an instance operation, the side on which the click occurs.

Generally, if the operation references an existing element, such as a defined method or
a Marten primitive, double-clicking either side opens an appropriate window or dialog.
Otherwise, double-clicking the left side or the right side issues a warning indicating that
the referenced element does not exist and prompts you to create it.

Specifically, the results of double-clicking on the sides of operations, according to the
name and type of the operation, are as follows:

Method name If no universal method called name already exists, a
dialog prompts you to create the universal method.
Selecting Yes results in a dialog prompting for a
section for the new universal method. On selecting a
section, the universal method is created and a Case
window for the first case of the newly created
universal method opens.

Otherwise, if a universal method called name exists, a
Case window for the first case of the universal method
opens.

Method /name If multiple classes have a method name, you are
prompted to choose from a list of those classes. On
selecting a class, a Case window for the first case of
the selected class method opens.

For details on the types of operations available in Marten, see "Types of operations" on
page 19. For details on the relationship between the user-provided name of an
operation and its type, see "Operation names" on page 26.

It should be understood in the following that the empty string is
a valid name and is treated as such.

Editor windows 102
Otherwise, if a single class has a method name, a
Case window for the first case of the class method
opens.

If no class has such a method OR if the COMMAND
key is held down, a dialog prompts you to create the
class method. Choosing Yes prompts you to choose a
class in which to create the method. On selecting a
class, the class method is created and a Case window
for the first case of the newly created class method
opens.

Method //name If the class containing the method in which the
context-driven method operation is located has a
method called name, the first case window of this
method is opened.

Otherwise, a dialog prompts you to create the class
method. Choosing Yes creates the class method
created and opens a Case window on the first case of
the newly created class method.

Method class/name If the class class exists and has a method name, the
first Case window of this method opens.

Otherwise, a dialog prompts you to create the class
method.

� If Yes is selected, and the class class exists, the
class method is created and a Case window for the
first case of the newly created class method
opens.

� If Yes is selected, and the class class DOES NOT
exist, a dialog prompts you to create the class.
You are then prompted to select the section for the
new class, and the class is created. Then the class
method is created and a Case window for the first
case of the newly created class method opens.

Primitive name An Information window opens, displaying results
for the primitive.

Evaluate No action.

Local Opens the first Case window of the local.

Constant Opens an Enter Text window.

Match Opens an Enter Text window.

Persistent name If the persistent name exists, its containing Persistents
window opens.

Otherwise, if the persistent name does not exist, a
dialog prompts you to create the persistent. Choosing
Yes prompts you to select the section for the new
persistent and creates the persistent.

Instance name If the class name exists, and the click was on the left
side, its Attributes window is opened. If the click was
on the right side, its Methods window is opened.

Otherwise, if the class name does not exist, a dialog
prompts you to create the class. Choosing Yes

Editor windows 103
prompts you to select the section for the new class and
creates the class.

Get or Set name or /name Opens a dialog with a scrolling list of all classes
which have an attribute name. On selecting a class, a
Attributes window for the selected class opens,
displaying the attribute and its default value.

If no class has such an attribute OR if the
COMMAND key is held down, a dialog prompts you
to create the attribute. Choosing Yes prompts you to
select from a scrolling list of all classes that do not
have an attribute name. On selecting a class, dialogs
are displayed (for specifying whether the attribute is
to be a class or an instance attribute, and for setting its
default value) as for runtime creation of attributes.

External Procedure name An Information window opens, displaying results
for the external procedure.

External Constant An Information window opens,displaying results for
the external constant.

External Match An Information window opens, displaying results
for the external match.

External Global External Address operations are not supported by the
Marten IDE.

External Address External Address operations are not supported by the
Marten IDE.

External Get No action.

External Set No action.

Working with roots and terminals
Roots and terminals provide the means to pass data into operations and for returning
data from operations. The following sections provide information on working with
roots and terminals in a Case window:

� Creating roots and terminals
� Setting the arity of an operation
� Deleting a root or terminal
� Dragging operations, roots and terminals
� Changing the type of root or terminal.

Creating roots and terminals
Operations have target areas above and below where roots and terminals can be created.

� To create an input terminal for an operation:

• Move the pointer just above the top of the operation and COMMAND-click. As
long as the pointer is not too close to an existing terminal, a new node will be
created.

Editor windows 104
� To create an output root for an operation:

• Move the pointer just below the bottom of the operation and COMMAND-click.
As long as the pointer is not too close to an existing root, a new root will be created.

Note: For operations that have fixed arity (Get and Set operations for example), you
cannot add or delete roots or terminals except to add a terminal destined to
become an inject terminal.

Setting the arity of an operation
When you first create and name an operation, Marten automatically assigns the default
arity of the operation.

If an operation is transformed to one with lesser arity, superfluous terminals and roots
are deleted from right to the left. If an operation is transformed to one with greater arity,
the additional terminals and roots are added to the right.

Operation transformation by name change
Changing an operation’s name to that of an External Procedure automatically sets the
correct arity. For details on External Procedures, refer to the Marten Primitives
Reference.

Changing the name of an operation to that of a user-defined method, enforces arity in
one of two ways:

� If the name of the operation is a universal reference (it has no slash, as in
myMethod), context-determined reference (//myMethod), or an explicit class
method reference (myClass/myMethod), the method called by the operation can
be identified exactly and its arity determines that of the operation.

� If the name of the operation is a data-determined reference (/myMethod), a best
guess at the arity is made.

Deleting a root or terminal

� To delete a root or terminal:

• Select the root or terminal and press DELETE.

You cannot delete roots and terminals on fixed arity operations such as constants,
matches, Gets, and Sets.

Dragging operations, roots and terminals
When an operation, the input bar, or output bar is dragged, its terminals and roots move
with it. In addition, you cannot drag the roots of Constants or the terminals of Match
operations.

For information on how Marten does this, see "Operation names" on page 26.

For details on types of method references, see "Operation names" on page 26.

Editor windows 105
About resizing operations
Operations CANNOT be resized except by dragging roots and terminals or by selecting
the Resize Operations command. This command forces the operations to resize to an
optimal size.

Changing the type of root or terminal
You can change the type of roots and terminals to provide for list-processing or to act
as an inject control.

� To change the type of annotation on a root or terminal:

• Click the root or terminal and choose a type from the Controls menu.

Connecting operations
Operations can be connected in two ways:

� Datalinks pass data from roots to terminals

� Synchro links control the sequence in which operations are executed.

The following sections provide information on working with datalinks and synchros.
They include:

� Creating or deleting a datalink
� Creating or deleting a synchro link
� Shortcuts for creating and connecting operations
� Straightening datalinks.

Creating or deleting a datalink
A datalink passes data between the output root of one operation and the input terminal
of another operation.

� To create a datalink from a root of one operation to a terminal on another
operation:

1. Click on the root to select it.

2. Holding the OPTION key down, move the cursor (without clicking) to the terminal
to which you wish to connect the root.

3. When the terminal changes color, click the mouse. If a datalink already existed
between the root and terminal, the datalink will be deleted.

For details on the annotations available, see "The Controls menu" on page 68.

For detailed background information, see "Connecting operations" on page 26.

Editor windows 106
When creating datalinks, the direction and selection order are irrelevant. This is
illustrated in the following diagrams:

� If root A is selected (as shown), OPTION-clicking on terminal B creates a datalink
between A and B:

� Similarly, if terminal B is selected, OPTION-clicking on root A creates a datalink
between A and B.

This procedure can also be used to delete an existing datalink between A and B.

Creating or deleting a synchro link
A synchro connecting two operations, dictates the order in which they will execute. In
the following example, if operation A is selected, OPTION-clicking operation B
creates a synchro between the two operations.

Operation A will always execute before operation B, but this does not necessarily mean
that A will execute immediately before B.

Note: No data passes along a synchro.

To delete a synchro, repeat the steps followed to create it.

Unlike datalinks, when creating a synchro, direction and
selection order of the operations is critical. The operation
selected first is forced to be executed before the operation
selected second.

Editor windows 107
Shortcuts for creating and connecting operations

Creating a root (or terminal) and datalink
If a root (or terminal) on one operation is selected, OPTION-COMMAND-clicking
near the top (or bottom) of another operation creates a terminal (or root) and a datalink
connecting it with the selected root (or terminal).

Creating an operation, root or terminal, and a datalink
If a root (or terminal) on one operation is selected, OTION-COMMAND-clicking in
unocupied space creates an operation with a terminal (or root) and connecting datalink.

Creating an operation and a synchro link
If an operation is selected, OPTION-COMMAND-clicking in unoccupied space
creates a new operation and a synchro from the original operation to the new one.

Creating constant and match operations
Double-clicking a terminal creates a new constant operation with a single root,
connected by a datalink to the terminal.

Double-clicking a root creates a new Match operation with a single terminal, connected
by a datalink to the root.

COMMAND-double-clicking near the top (or bottom) of an operation, but away from
existing terminals (or roots), creates a new terminal (or root), with an attached Constant
(or Match) operation connected by a datalink.

Straightening datalinks
Marten lets you straighten, datalinks.

� To tidy datalinks:

1. Select a root or a terminal of a datalink that you wish to straighten.

2. Press the SPACEBAR to move the operation of the root or terminal so that the
datalink attached to it is straight.

You can also use this feature when multiple root or terminals are selected. Marten will
make a best guess as to how to straighten the datalinks.

Editor windows 108
Using controls
Controls provide control flow in a Marten application. They allow you to:

� Terminate execution of methods
� Move between the cases of a method
� Specify the tests and conditions under which these actions are taken.

The following sections document the use of controls in a Case window. The specific
tasks are:

� Adding a control to an operation
� Changing the control on an operation
� Changing the activation condition on a control
� Deleting a control from an operation.

Adding a control to an operation

� To add a Next Case, Continue, Terminate, Finish or Fail control to an operation:

• Select the operation and from the Controls menu choose the appropriate menu
command.

The appropriate control is added to the operation, with an X inside it to indicate that the
activation condition is ‘on Failure’.

If a selected root is attached to two or more terminals, pressing
the SPACEBAR has no effect, since both datalinks cannot be
made straight.

For background information on controls, see "Controls" on page 29. Controls are
applied to operations, roots, and terminals using menu commands. For details on those
menu commands, see "The Controls menu" on page 68.

For information on activation conditions, see "Success, failure, and error" on page 33.
For information on how to change the activation condition, see "Changing the
activation condition on a control" on page 109.

Editor windows 109
Changing the control on an operation

� To change the control on an operation

• Select the operation and from the Controls menu choose the preferred menu
command.

The activation condition ‘on Success’ or ‘on Failure’ of the original control is retained
in the new one.

Changing the activation condition on a control
The Controls menu’s Reverse command toggles the activation condition on a control
between Success and Failure.

� To change the activation condition on an operation’s control:

• Select the operation and from the Controls menu, choose Reverse.

Deleting a control from an operation

� To delete a control from an operation:

• Select the operation and from the Controls menu choose Simple.

Using locals
You can group a collection of operations into a Local to help alleviate complicated
cases or cases with large numbers of operations. A Local is a single operation that
represents a collection of operations, executes that collection as if they were a single
method, and provides access to those operations.

The following sections provide instructions and background information for working
with locals. They include:

� Creating a local
� What happens when a local is created
� Corresponding arity in locals
� Viewing the contents of a local.

For information on how to change the activation condition, see "Changing the
activation condition on a control" on page 109.

For background information on activation conditions, see "Success, failure, and error"
on page 33.

For detailed information on locals, see "Locals" on page 24.

Editor windows 110
Creating a local

� To group a collection of operations into a Local:

1. Select the operations to be grouped. For example:

2. From the Operationss menu, choose Operations to Local.

A Local operation with appropriate arity replaces the selected group. The name is
selected for editing.

3. Type a name for the local and press RETURN.

Changing a set of operations to a local cannot be reversed! If
you inadvertently create a Local method that does not contain
the correct operations, it is best not to try editing it, since it
might be difficult to ensure correct arity and dataflow. It is
recommended instead that you start over. For this reason, it is
also recommended that before choosing Operations to Local
you double-check your selected operations, and save the
method prior to creating the Local.

Editor windows 111
What happens when a local is created
Datalinks and synchros inside the Local are preserved. Any synchros that connected
operations within the group with operations outside the group are removed.

Any inputs from operations outside the local operation to operations inside the Local
are routed through input terminals on the Local icon. Any outputs from operations
inside the group that are to be inputs to operations outside the local operation are routed
through output roots on the Local.

Editor windows 112
Corresponding arity in locals
Correspondence between the terminals of a Local operation and the roots of the input
bars of the cases of its corresponding Local method is enforced. The same applies to
correspondence between the roots of a Local operation and the terminals on the output
bars of the cases of its Local method.

Viewing the contents of a local

� To view the operations that make up a local:

• Double-click on the left or right side of the Local operation.

The Local method opens, and you can inspect its contents:

Editor windows 113
Clipboard functions on operations
Standard clipboard functions can be applied to operations by selecting the operation
and choosing the appropriate Edit menu command. Details are provided in the
following sections:

� Copying Operations
� Pasting Operations
� Duplicating Operations
� Cutting Operations.

Input and output bars, roots, and terminals cannot be copied, cut, pasted, or duplicated
when selected individually (i.e. not part of a method or operation respectively).

Copying Operations
If more than one operation is selected, the group of selected operations and all datalinks
and synchros within the group to be copied into the Object clipboard.

If a single operation is selected, the operation and its roots and terminals are copied to
the clipboard but not any connected datalinks or synchro links. If the operation is a
Local, its cases are also copied.

Pasting Operations
An operation or operations that have been copied to the Object clipboard can be pasted
into a case window.

Editor windows 114
Duplicating Operations
You can select an operation or group of operations and make a copy of them within the
same Case window.

Cutting Operations
A selected operation or group of operations can be simultaneously copied to the Object
clipboard and removed from a Case window.

Using cases
The following sections provide information working with method cases. They include:

� The Case dock
� Opening the previous or next case
� Creating a new case
� Deleting a case
� Reordering cases
� Clipboard functions on cases
� Corresponding arity in cases
� Accessing the contents of a case.

The Case dock
The Case window has a Case dock, by default placed on the left side of the Case
window.

The Case dock lets you display the different cases of a method, select cases for
operations such as deleting, and reorder the cases of a method.

For background information on cases, see "Cases" on page 17.

For information on how to change the position of the Case dock, see "Preferences" on
page 56.

Editor windows 115
Opening the previous or next case

� To open the previous case:

• Click the Left ARROW key

� To open the next case:

• Click the RIGHT ARROW key

Creating a new case

� To create a new case in a method:

• COMMAND+click in the Case dock just below or above an existing icon (or just
to the right or left of, if the Case dock is positioned at the bottom of the Case
window) depending on where you want the case to appear in the method’s sequence
of cases.

For example, to create a new second case for a three case method, you would click
between the two existing case icons.

Double-clicking the icon for the new case opens the case window for the new case. The
new case is automatically assigned the correct arity according to the first case.

Deleting a case
When a case icon is deleted, the remaining icons are renumbered to account for the
deletion.

� To delete a case:

• Select the case icon and press DELETE or select the Clear command from the Edit
menu.

Reordering cases
The sequence of cases can be reordered.

� To change a case’s position in the sequence:

• Drag the case icon to a position immediately above or below (or left or right of)
another icon.

Case numbering is updated to account for the new sequence.

Clipboard functions on cases
You can use the Cut, Copy, Paste, Delete, and Duplicate menu commands against
selected case icons. This is particularly useful for deleting cases or making a copy of
case to be used in another method.

When reordering cases, make sure you change the activation
conditions and case controls on operations providing flow
control among method cases.

Editor windows 116
Corresponding arity in cases
Input and output arity is enforced between cases of a method. Creating or deleting
roots or terminals in a case automatically creates or deletes the corresponding roots or
terminals in all the remaining cases.

Accessing the contents of a case

� To open a case using the case list pane:

• Double-click on the case icon in the Case dock.

The Value window

The Value window displays values of simple and complex Marten data. It lets you
create and edit values, and enables navigation through the structures of complex values,
such as objects and lists.

The Value window consists of a control area at the top of the window and a value panel.
The value panel displays the current value and can contain simple data such as numbers
and strings or complex data such as lists and instances. The control area has the
following items:

Type Displays and allows you to control the datatype of the
displayed data.

View Allows you to alter the way in which the value is
represented.

The OK and Cancel controls are for saving and cancelling changes and dismissing
Value windows.

Editor windows 117
The following sections provide background information and instructions on working
with Values windows. They include:

� Opening a Value window
� Closing a Value window
� Closing a chain of Value windows
� Data types in the Value window
� View options in the Value window
� Clipboard functions on values.

Opening a Value window

� To open a Value window, use one of the following techniques:

• Double-click one of the following:

� A Persistent in a Persistents window or a Persistent operation in a Case window
� An attribute in either an Instance Attributes window, a Class Attributes

window, or a Class Instance Value window
� An element of a list displayed in iconic mode in a List Value window
� An executed root or terminal, at runtime in step mode in a Debug window.

Closing a Value window
There are two ways to close a value window.

� To close the Value window without saving changes to the displayed value:

• Click the Cancel button.

� To close the Value window and save changes you made in the displayed value:

• Click the OK button.

Note: A Value window for an executed root or terminal in an execution window
closes when the case finishes executing.

Closing a chain of Value windows
When you close a Value Window that has other Value windows that were opened from
it, the other Value windows are closed first in the manner that the original or root Value
window is closed. For example, imagine a Value window is open for an instance and
a “sub” Value window is open for an attribute of that instance. Clicking the OK button
for the Instance Value window causes the attribute Value window to be closed first, as
if its OK button had been clicked. This updates the value of the attribute in the Instance
Value window. Then the Instance Value window is closed and the edited instance is
updated with the new updated value of the attribute and any other modifications that
were made.

If the Close button was clicked in the situation described above, the attribute Value
window is closed as if its Close button was clicked and then the Instance Value window
is closed without any modification to the original instance.

Editor windows 118
Data types in the Value window
The Type list in the Value window control area displays the datatype of the value shown
in the value panel. This can range from basic Marten datatypes such as numbers and
strings to complex types such as lists and instances of classes.

The Type menu lets you look up and select from all available types.

Above the line in the popup is a list of Marten basic datatypes. Below the gray line is
a list of classes currently defined in the Marten environment.

Selecting a new type from the popup, creates an object with the default value for that
type and displays it in the value panel.

View options in the Value window
The View popup menu is used to specify display of data and numbers. Data can be
displayed textually or iconically. The types of views (Text or Iconic) are described in
detail next.

The View popup menu provides the following options:

� Text views
� Iconic view.

Text views
Any simple data (of type boolean, integer, none,null, real, or string) can be displayed
as text.

Editor windows 119
Lists can also be displayed textually, as in the next diagram:

Note: A list containing an instance of a class will display the object as a bracketed
name (cf: (<Simple Button> <Simple Edit Text>)). Be vary careful in this
situation because if this text is edited or changed, the List Value window will
interpret the text as defining a list of strings (i.e. ("<Simple" "Button>"
"<Simple" "Edit" "Text>")). All editing of a list containing instances should
be done in the iconic view of the List Value window.

All the normal text editing operations apply to text views of data.

Iconic view
This view displays either a list or an object as a sequence of icons, with the icons
representing either elements of the list or attributes of the object.

The icons take the form of vertically arranged circles. When a list is viewed, each icon
has to the right of it a number denoting its position in the list, and to the right of that its
value. When an object is viewed, the Value window essentially displays the object’s
attributes window.

Viewing A List:
Any kind of list, whether it contains class instances or not, can be displayed iconically.
Each circular icon represents an element of the list.

Editor windows 120
Icons can be dragged within the value panel to change their positions in the list.
COMMAND-clicking creates a new icon.

List element values that are represented textually can be edited in the Value window,
by selecting the value's text and using standard text editing operations.

To edit elements containing instances, lists, or values that are too long to be fully
displayed on one line, double-click the list element icon to open another Value window
for it. The new Value window is offset just below its immediate parent's Value window.

Viewing An Instance:
An instance can only be displayed iconically. The display in the Value window is
similar to the Attributes window for a class but you can only edit values of attributes.
You cannot create, delete, rename, or reorder attributes in the Value window.

Editor windows 121
Attribute values that are represented textually can be edited directly in the Value
window, by selecting the value's text and using standard text editing operations.

To edit attributes containing instances, lists or values that are too long to be fully
displayed on one line, double-click the attribute icon to open another Value window for
it. The new Value window is offset just below its immediate parent's Value window.

Clipboard functions on values

Text
All standard clipboard operations (Copy, Cut, Paste, Duplicate) are available when
editing text in a Value window.

Icons
When a List Value window displays a list iconically, the icons may be selected by either
clicking on the icons (the SHIFT key may be used to perform multiple selections) or
dragging out a marquee rectangle that intersects the icons. Once a selection has been
made, the selected list may be copied to the clipboard by performing a COMMAND-C
or issuing the Copy command from the Edit menu.

This selection may be pasted into any List Value window and the selected list will be
appended to the list already displayed.

When a Class Instance (Object) Value window displays the attributes iconically, the
icons may be selected by either by clicking on the icons (the SHIFT key may be used
to perform multiple selections) or dragging out a marquee rectangle that intersects the
icons. Once a selection has been made, the selected attributes may be copied to the
clipboard by performing a COMMAND-C or issuing the Copy command from the
Edit menu.

Editor windows 122
This selection may be pasted into any Class Instance Value Window that has the exact
same matching attributes (number, name, and order). In contrast to the pasting of a list,
the pasted attributes will overwrite the currently displayed ones.

Index
Normal run mode 66

A
About Marten menu command 55
activation condition

changing 109
introduced 29

addition 24
AND 24
annotations

changing on root/terminal 105
introduced 28
menu commands 68
operations 101

API calls 25
application file 9
arity

and locals 112
and operation name change 104
described 19
Evaluate operations 24
Get operations 22
Instance operations 21
Persistent operations 21
Set operations 23
setting 104

Arrange in Front menu command 75
attributes

automatic deletion 88
changing default value 98

clipboard functions 98
creating 97
default values 21
deleting 97
deletion restriction 97
described 13
instance vs. class 13
naming restriction 13
naming restrictions 97
propagaing values to descrndants 62
reordering 97
returning value of 22
searching for definitions 53

Attributes menu command 73
Attributes window

described 95
opening 73, 96
tasks performed in 96

B
bitwise operations 24
Bring All to Front menu command 74

C
C language 25
Case dock

creating a case 115
deleting cases 115
described 114
reordering cases 115

Case window

described 98
opening 99
tasks performed in 99

cases
accessing contents 116
clipboard functions 115
contents 18
control flow 17
creating 115
deleting 115
described 17
input/output 18
navigating 114
output on termination 31
proceeding to next 30
reordering 115
terminiating current 31
testing to continue 30
working with 114

class attributes
automatic deletion 88
changing default value 98
clipboard functions 98
creating 97
default values 21
deleting 97
deletion restriction 97
described 13
icon 12, 13
naming restriction 13
reordering 97
returning value of 22
searching for definitions 53

Class Attributes window
described 95
opening 96

Class Attributes menu command 74
tasks performed in 96

Class methods
accessing contents 95
calling from parent 23
changing type of 94
converting from Locals 66

creating 94
deleting 94
described 15
icon 12
naming and reference types 26
naming restrictions 94
searching for definition 53
types 15

Class Methods window
described 93
opening 94
tasks performed in 93

classes
accessing methods/attributes 90
changing sections 62
contents 11
creating 88
creating instances 21
creating subclasses 89
deleting 88
icon, described 12
naming restrictions 88
propagating attribute values 62
searching for definition 53

Classes menu command 73
Classes window

described 87
opening 73, 88
tasks performed in 87

Clear menu command 61
clipboard functions

cases 115
on attributes 98
operations 113

Close menu command 58
Constant menu command 64
Constant operations

and terminal/root dragging 104
creating 64
described 20
inject restrictions 32
searching for 52

constants

double-clicking, effect of 102
Constructor type (methods)

changing method to 95
introduced 15

Continue controls
adding to an operation 71
described 30

Continue menu command 71
Continue on Failure controls

creating 70
Continue on Success controls

creating 70
control flow, introduced 29
Control menu command 69
controls

adding to operations 108
changing activation condition 109
changing type of 109
deleting 109
described 29
icons 29
Inject 32
working with 108

Controls menu 68
Copy menu command 61
Cut menu command 61

D
data types

in Value windows 118
data-determined reference 26
datalinks

creating/deleting 107
described 27
multiple from root 27
shortcuts for creating 107

Debug run mode 66
default attribute values 21
definitions, searching for 53
Destructor type (methods)

changing method to 95
introduced 15

dirty sections 43

division 24
double-clicking effect, operations 101
Duplicate menu command 62

E
Editor type (methods)

changing method to 95
introduced 15

editor windows
closing 48
opening 45
types of 77

Evaluate menu command 66
Evaluate operations

arity 24
creating 66
described 24
double-clicking, effect of 102
searching for 52

exclusive OR 24
explicit reference 26
exponentiation 24
External Address operations

searching for 52
External Constant menu command 64
External Constant operations

creating 64
introduced 25
searching for 52

external constants
double-clicking, effect of 103

external definitions
when loaded 37

External Get Field menu command 65
External Get Field operations

creating 65
External Get operations

searching for 52
external get operations

double-clicking, effect of 103
External Gets 26
External Global menu command 65
External Global operations 25

creating 65
searching for 52

external globals
double-clicking, effect of 103

External Match operations 25
creating 64, 64
searching for 52

External operations
described 25
inject restrictions 32

External Procedur menu command 64
External Procedure operations

searching for 52
External Procedures

described 25
external procedures

double-clicking, effect of 103
External Set Field menu command 65
External Set Field operations

creating 65
External Set operations

searching for 52
external set operations

double-clicking, effect of 103
External Sets 26
externals addresses

double-clicking, effect of 103

F
Fail controls

adding to an operation 71
and List annotations 28
and Loop annotations 29
and Repeat annotation 29
described 32
working with 108

Fail menu command 71
failure, operations 29
File menu 58
files

section, when created 82
Find menu command 62
Finish controls

adding to an operation 71
and List annotations 28
and Loop annotations 29
and Repeat annotation 29
described 31
working with 108

Finish menu command 71
folders

not searched for sections 38
seach trees 37
search order 38
suggested structure 38

FOR loops 29

G
Get menu command 65
Get operations

arity 22
creating 65
described 22
naming and reference types 22
searching for 52

get operations
double-clicking, effect of 103

H
Hide Marten menu command 57
Hide Others menu command 57

I
icons

class attributes 12, 13
Class methods 12
controls 29
Instance attributes 12
instance attributes 13
libraries 10
Repeat annotation 29
resources 10
section 10
selecting multiple 50

Info Window menu command 71
Initialization methods

converting method to 94
creating 65

Inject controls
creating 69
described 32
operation restrictions 32

input bars
introduced 18

instance attributes
automatic deletion 88
changing default value 98
clipboard functions 98
creating 97, 97
deleting 97
deletion restriction 97
described 13
icon 12, 13
naming restriction 14
reordering 97
returning value of 22
searching for definitions 53

Instance Attributes window
described 95
opening 96
tasks performed in 96

Instance menu command 65
Instance operations

arity 21
creating 65
described 21
searching for 52

instances
attribute setting methods 21
creating 21
creating with Initialization method 21
double-clicking, effect of 102
setting attribute values 23

integer division 24
Interpreter

Run Mode 66

L
langauge overview 9

libraries
access to 10
icon 10

List annotations
appying to root/terminal 69
creating 69
described 28

List menu command 69
lists

parallel processing of 28
testing 21

Local menu command 66
Local to Method menu command 66
Locals

double-clicking, effect of 102
locals

arity considerations 112
automatic deletion of 101
converting to method 66
creating 66, 66, 110
creation details 111
described 24
inject restrictions 32
searching for 52
viewing contents 112
working with 109

Loop annotations
applying to root/terminal 69
described 29

Loop menu command 69
looping 28

M
Match menu command 64
Match operations

and terminal/root dragging 104
creating 64
described 21
inject restrictions 32
searching for 52

matches
double-clicking, effect of 102

mathematical expressions 24

menus
Controls 68
Edit 60
File 58
Operations 63
System 55
Tools 75
Windows 71

Method menu command 63
methods

cases 16
described 14
double-clicking, effect of 101
naming and reference types 26
types 14
Universal 16

Methods menu command 73
modulus 24
Move To Section menu command 62
Multiplex operations

applying 68
described 28

multiplication 24

N
names

and operation type change 104
class/alias/shell restrictions 88
restrictions, attributes 97
restrictions, class methods 94
restrictions, class-related 88
selecting 48

New Projects Window menu command 58
Next Case controls

adding to an operation 70
described 30
working with 108, 108

Next Case menu command 70
NOT 24

O
Open menu command 58
opening operations 101

operations
adding controls to 108
changing control type 109
changing type of 63, 101
clipboard operations 113
connecting 105
connecting with datalinks 105
connecting with synchros 106
control activation condition 109
controls 29
creating 100
deleting 101
deleting controls 109, 109
described 18
double-clicking effect 101
dragging 104
execution sequence 26
Multiplex 28
name/type change 104
naming 100
naming effects 26
passing data between 27
resizing 105
setting arity 104
types 19

Operations menu 63
Operations to Local menu command 66
OR 24
output bars

introduced 18

P
Page Setup... menu command 60
parentheses, folder names 38
Paste menu command 61
Persistent menu command 64
persistent operations

arity 21
persistents

accessing contents 92
changes across Interpreter executions 93
changing operations to 21
creating 64, 92

deleting 92
described 34
double-clicking, effect of 102
moving sections 62
naming restrictions 92
searching for 52
searching for definitions 53
setting value 21

Persistents menu command 73
Persistents window

described 91
opening 73, 91
tasks performed in 91

Preferences menu command 56
Primitive menu command 64
primitives

double-clicking, effect of 102
searching for 52
when loaded 37

projects
adding sections 43
adding sections to 83
associated files 9
class/alias/shell name restrictions 88
creating 41
creating new sections 78, 82
described 9
folders not searched 38
opening 42
removing sections 79, 83
reverting to saved 59
saving 44
search path, components 37
search tree folders 37
sections storage suggestions 38

Propagate Attribute menu command 62

Q
Quit Marten menu command 58

R
Redo menu command 61
Remember menu command 74

Repeat annotation
creating 69
described 29
icon 29
termination of 29

Repeat annotations
applying to operations 69

Repeat menu command 69
Repeat multiplexes

creating 69
repeat-until loops 29
Reset Operations menu command 68
Resize Operations menu command 68
resources

access to 10
icon 10

Restore menu command 74
Reverse menu command 70
Revert menu command 59
roots

and operation arity change 104
changing type of 105
creating 103
deleting 104
described 19
dragging 104
list annotation 28
Loop annotation, creating 69
multiple datalinks 27
simple, creating 68

Run Mode menu command 66

S
Save As menu command 59
search tree folders 37
sections

access to 10
accessing 78, 82
accessing contents of 79, 84
adding to a project 83
adding to project 43
as organizational tool 9
creating 42, 78, 82

described 9
dirty 43
disk file correspondence 9
folder details 37
folder search order 38
icon 10
removing from project 79, 83
renaming 84
reverting to saved 59
saving 43
search path 37
storage suggestions 38
types of contents 11
when created 43
when file created 82

Sections menu command 73
Sections window

described 77, 80
opening 73, 78, 82
tasks performed in 78, 81

Select All menu command 62
selection

deselection and insertion point 49
icons 49
introduced 48
multiple icons 50
section names restriction 49
text 49
toggling icon/text 49

sequence of execution 26
Set menu command 65
Set operations

creating 65
described 23
naming and reference types 23
searching for 52

set operations
double-clicking, effect of 103

shift operations 24
Show... menu command 58
Simple menu command 68
Simple operations

creating 68

described 20
searching for 52

simple roots/terminals
creating 68

single-inheritance 9
Skipped run mode 66
Stack menu command 74
Stack windows

opening 74
static values 20
strings

testing 21
subclasses

creating 89, 89
creating in other sections 89

subtraction 24
success, operations 29
Super menu command 69
Super operations

creating 69
described 23

superclasses
calling methods in 23

synchro links
creating/deleting 106
described 27

System menu 55

T
terminals

and operation arity change 104
changing type of 105
creating 103, 103
deleting 104, 104
described 19
dragging 104
inject creating 69
List annotation, creating 69
Loop annotation, creating 69
simple, creating 68

Terminate controls
adding to an operation 71
and List annotations 28

and Loop annotations 29
and Repeat annotation 29
described 31

Terminate menu command 71
text

introduced 9
Tool type (methods)

changing method to 95
introduced 16

Tools menu 75
Touch command 43
types

in Value windows 118

U
Undo menu command 61
Universal methods

converting from Locals 66
creating 85
deleting 86
described 16
moving sections 62
naming restriction 16
opening cases 87
renaming 86
searching for definition 53

Universal Methods menu command 73
Universal Methods window

described 84

opening 73, 85
tasks performed in 85

universal reference 26
Untouch command 43
Update menu command 60

V
Value window

closing 117
closing chain of 117
data types in 118
described 116
opening 117
tasks performed in 117
view options 118

values
constant 20
testing 21

W
while-do loops 29
windows

closing 48
Windows API calls 25
Windows menu 71

X
XOR 24

	Marten language elements
	Projects and sections
	Classes
	Attributes

	Methods
	Class methods
	Universal methods
	Cases

	Operations
	Terminals and roots
	Types of operations
	Operation names
	Connecting operations

	Multiplexes
	List annotations
	Loop annotations
	Repeat annotations

	Controls
	Types of controls
	Success, failure, and error

	Persistents

	General Editor usage
	General Editor operations
	Starting the Marten editor
	What happens when Marten is started
	Quitting Marten

	Project and section operations
	Creating a new project
	Opening an existing project
	Creating a section
	Adding an existing section to a project
	Saving sections
	Saving a project

	Common operations on windows
	Standard window components
	Opening windows
	Closing windows

	Selection and editing rules
	Selection in general
	Selection and operations
	Multiple selection
	Selection: icon vs. text
	Editing text

	Editing Marten elements
	Creating elements
	Deleting elements
	Moving elements

	Finding Marten elements

	Editor menus and menu commands
	The System Menu
	About Marten
	Preferences
	Services
	Hide Marten
	Hide Others
	Show All
	Quit Marten

	The File menu
	New
	Open
	Close
	Save
	Save As
	Revert
	Import
	Export
	Update
	Page Setup
	Print

	The Edit menu
	Undo
	Redo
	Cut
	Copy
	Paste
	Clear
	Duplicate
	Select All
	Move To Section
	Propagate Attribute
	Find
	Spelling
	Special Characters

	The Operations menu
	Method
	Primitive
	External Procedure
	Constant
	External Constant
	Match
	External Match
	Persistent
	External Global
	Instance
	External Address
	Get
	External Get
	Set
	External Set
	Local
	Evaluate
	Run Mode
	Operations to Local
	Local to Method
	Tidy Operations
	Resize Operations
	Reset Operations

	The Controls menu
	Control menu commands that only apply to operations
	Control menu commands that affect roots and terminals
	A menu command for toggling activation conditions
	Control menu commands for controls on operations and the output bar

	The Window menu
	Information
	Sections
	Universal Methods
	Classes
	Persistents
	Methods
	Attributes
	Class Attributes
	Errors
	Stack
	Remember Windows
	Restore Windows
	Minimize Window
	Minimize All Windows
	Bring All to Front
	Arrange in Front

	The Tools menu

	Editor windows
	The Projects window
	Opening the Projects window
	Starting a new project
	Removing a project from the Projects window
	Accessing the contents of a project

	The Sections window
	Opening the Sections window
	Creating a new section
	Removing a section from the project
	Adding an existing section to the project
	Renaming sections
	Accessing the contents of a section

	The Universal Methods window
	Opening a Universal Methods window
	Creating a universal method
	Renaming a universal method
	Deleting a universal method
	Accessing universal method contents

	The Classes window
	Opening a Classes window
	Creating a class
	About names for classes
	Deleting a class
	Creating subclasses; assigning a parent to a class
	Orphaning a child class
	Accessing the attributes and methods of a class

	The Persistents window
	Opening the Persistents window
	Creating a persistent
	About names for persistents
	Deleting a persistent
	Accessing the contents of a persistent
	Persistents in the section file

	The Class Methods window
	Opening the Class Methods window
	Creating a Class method
	About names of class methods
	Deleting a class method
	Changing the type of class method
	Accessing the contents of a class method

	The Class Attributes and Instance Attributes windows
	Opening an Attributes window
	Creating an attribute
	About names of attributes
	Deleting an attribute
	Reordering attributes
	Clipboard functions on attributes
	Changing the default value of an attribute

	The Case window
	Opening a Case window
	Using operations in a Case window
	Effect of opening operations by double-clicking
	Working with roots and terminals
	Connecting operations
	Using controls
	Using locals
	Clipboard functions on operations
	Using cases

	The Value window
	Opening a Value window
	Closing a Value window
	Closing a chain of Value windows
	Data types in the Value window
	View options in the Value window
	Clipboard functions on values

	Index

