Marten - CGI Example

This document will show you how to create a CGI executable using the Marten and Xcode development environments.

Important - Read Me

A CGI executable is a command line tool and as such cannot be created by using the Marten Update command. And because the
CGIC library supplies the "main" method, the Marten Build command cannot be used either. In this case, the exported C files of a
CGI executable must be compiled and linked by a third party C language development environment. In this example, the Apple
Xcode application is used as that development environment and users should have the Xcode environment installed on their system.
Because these files will be linked against Marten frameworks, these frameworks must have been installed in the appropriate
location for users to complete this example.

This example requires special Marten C code files. These may be obtained from the support page of the Andescotia website at
"http://www.andescotia.com/support/" by downloading the file called "CGI Example Files". The C files will be added to your
soon-to-be-created project folder.

Creating the Marten project

To begin, launch the Marten IDE and create a new Marten project in a folder called "Marten CGI Example". Name the project and
project application "CGI Project" and add the CGIC and Standard libraries to the project. These libraries are MacOS X frameworks
and should be found in one of the standard frameworks folders:

[Address Book Plug-Ins [MartenBioinfo.framewark

[Application Support q [MartenBsD.framework

[Audio |
[Ccaches [MartenEngine.framework

~ CFMSupport [Marteninterpreter.framework
 ColorSyne [MartenLIBC.framework

_ Components [MartenMacOSA...ook.framework

_ Contextual Menu Items
_ Desktop Pictures

[Documentation
_ Filesystems

MartenMacOSCarbon.framework
MartenMacOSCocoa.framework
MartenMacOSIOKit.framework

|
|
|
|
|
|
|
|
|
e
-

o | MartenMacOSWebKit.framework
Fonts MartenMySQL.framework
[Frameworks P [MartenPostgres.framework
~ Image Capture
_ Internet Plug-Ins [MartenSystem.framework
 Internet Search Sites [MartenUlAqua.framework
[Java [PrintMessL.framework
_ Keyboard Layouts [stuffit.framework
[Keychains
_ Logs)1
~ Marten B

The libraries can be displayed in the Project Libraries window:

88N Projects of Marten
[B1© © cal Project

& O @ Libraries of CGI Project
@ Marten Standard Primitives
@ Marten CGIC Extensions

Create a new section and name it "CGI Section". Then create 5 universal methods as shown below. The universal method MAIN
should be installed as the MAIN method and the code is presented below.

06006 Projects of Marten

B4 © cal Project

O O) Sections of CCl Project
B i section

O O) Universals of CGI Section
B main MAIN

5 print e0e ' MAIN 1:1

a Print Line

7 [Handle submit | (1)

a Show Form

text/ html
—_—

1 !
string-to-pointer <HTML> <HEAD=> <TITLE>Marten CCI Test</TITLE> < /HEAD>

|C cgiHeaderContentType J]>2 2231 Print Line 2332222333332 Print Line |

ceeets

<BODY><H1>Hello World!< /H1> (_(_(-[-U'LL
et
cect

r L S
JJJJJJJJJItestcgic
testegic

o
string-to-pointer
T

|C cgiFormCheckboxsSingle [

5
[Handle submit JJJJJJJ
>

=1
</BODY > < /HTML>

o

0

|

The MAIN method creates the basic HTML for the CGI executable. The browser window title will be "Marten CGI Test" and the
text "Hello World!" will be displayed at the top of the page. A "submit" button named "testcgic" is on the form and it is checked for
submission in the local "Handle Submit". Finally the universal "Show Form" is called and the HTML is completed.

The "Handle Submit" local simply tests for submission (terminates if not submitted) and if successful, calls the "Handle Submit"
universal and then finishes with a horizontal rule.

® O @ Handle Submit 1:1 of MAIN 1:1

@

cgiFormSuccess

/.
T —

The Print universal is a simple wrapper for the "print" primitive.

[alaka] Projects of Marten

B¢ © cal Project

O O) Sections of CCl Project

P cai section
O O) Universals of CGI Section
£ main MAIN
. Print
5 Print Line

Print 1:1
: | a Handle Submit 0006 rin
ashow Form m

|

Similarly the Print Line universal is a simple wrapper for the "print" primitive combined with a Unix (ASCII 10) carriage return.

28N Projects of Marten

B9 © cal Project
O O) Sections of CCl Project
B cai section
O Oy) Universals of CGI Section
£ main MAIN
] print
. Print Line
7 B vandlesubmit @ 0 @ PrintLine 1:1
ashow Form
@
1
T ————
P

The "Handle Submit" universal is called when the Submit Request button is pushed. It gets the text from the text input box named

"name" and prints it after the phrase "Name: ".

06006 Projects of Marten

B4 © cai Project

O O O Sections of CCl Project
B i section

O O) Universals of CGI Section

£ main MAIN

£ print

5] Print Line

1 . Handle Submit
D showrorm o o o Handle Submit 1:1

@

name char 81

[C string-to-pointer] [make-external _|

|C cgiFormStringNoNewlines jl
2] A
o

o

)
"Name: "

[print §2222333(C cgiHtmiEscape]|
o o
v
A=

Finally the "Show Form" universal is responsible for the majority of the page. It is a form whose action is to call the CGI
executable named "testMarten.cgi", which will be the name of the executable created in this example. The page will display the

text "Text Field containing Plaintext" followed by a text input box labeled "Your Name". The final object displayed will be a
submit button with the title "Submit Request".

o000 Projects of Marten

B9 © cal Project

Oy O O Sections of CCl Project
LD cai section

O Oy) Universals of CGI Section
£ maiN MAIN
a Print

5 print Line

. | a Handle Submit
.Show Form

e 06 Show Form 1:1
|

|[:J

| <form method="POST" action="testMarten.cgi">

m <p Text Field containing Plai <p>

JJJJ 3 I

[PrintLine 33222 Print Line IJJJJJJJ Print Line |
ceeecs

ceeeets
<input type="text" name="name"> Your Name ('(,(.(-(' <p>
7 (e :
5 et

| Print Line [2223322332233222223(Print Line

O
ot (.{-('LL

< /form>

<input type="submit" name="testcgic" value="Submit Request”>
™ &S
b€)
| Print Line P22222333332222333322222333 Print Line |

Save the project and section. Then export (in the inline format) the project and section to the project folder. When finished, the
contents of the folder should be:

e06 [Marten CGI Example =
7 items, 21.43 GB available
- -
CGl Project CGl Project.inl.c CGI Project.inl.h
r@i L m
VPX VPL
CGI Project.vpx CGl Section.inl.c CGI Section.vpl
-

MarteninlineProject.h

Quit the Marten application.

Obtaining the CGI C Files

At this point, add the three files obtained from the Andescotia website to the project folder. These files are ""MacOSX CGIC.c",

"MacOSX CGIC.h", and "MacOSX_CGIC.c".

Be sure to hang on to the "MacOSX xxx" files after completing this example as they will be used as the basis for a future discussion
of the Marten library file format and as an illustration of how to write Marten primitives, procedures, structures, and constants.

[Xa)s) [Marten CGI Example =
10 items, 21.43 GB available

A

CGl Project CGl Project.inl.c CCl Project.inl.h
VPX VPL
CGI Project.vpx CGl Section.inl.c CGl Section.vpl

MarteninlineProject.h MacO5X CGIC.h

MacOSX_CGIC.c

There are still C files that are required for this example. The Marten CGI library is based on the shareware CGI C library created
by Thomas Boutell. As Andescotia LLC does not yet have a license to distribute this library, the actual C files required to create an
executable must be downloaded from his website. They can be obtained from www.boutell.com as shown below:

8O cgic: an ANSI C library for CGI Programming |
E] @ {‘,Ghttp:,-’,"mvw.boutell.com,-’cgic.n'#obtain Q- Q
[I] Apple .Mac Amazon eBay Financev News~ Yahoo! Apple Developer Andescotia Site CGIC Test »

LUTTIEITT TS LUTTIPTETE LYTL UTSUTRUTUTT TUT VETSTUTT 2.0, TTTLTUATTTY o

copy of this documentation in the file cgic.html.

cgic is available via the web from www.boutell.com: m
« Obtain cgic: gzipped tg{ file
« Obtain cgic: .ZIP file

Building cgic: a sample application

The sample application ‘cgictest.c' is provided as part of the cgic

»

After the gzip file has been downloaded, uncompress it to create the "cgic205" folder.

cgic205.tar.gz cgic205

The files that we need are the cgic.c and cgic.h files. Copy them into the project folder as illustrated below.

806 [Marten CCI Example o
10 items, 21.43 GB available

- -
CGl Project CGl Project.inl.c CGI Project.inl.h
h
VPX VPL
CCl Project.vpx CGl Section.inl.c CCl Section.vpl
-
MarteninlineProject.h MacOSX CGIC.h MacOSX CGIC.c
&-
A
MacOSX_CGIC.c
|
0o Tcgic205 L e]
2 of 9 selected, 21.43 GB available
LS - hl..
capture.c cgic.c cgic.h
. e T
@ X
cgic.html cgictest.c license.txt
- T i
Makefile readme.txt SUpporttxt
P

Preparing the Marten Xcode project

Now that all the C files are available, it is time to create the Xcode project. Launch Xcode and create a new project. It should be a
"Standard Tool" Command Line Utility.

NDO8 Assistant

.§ New Project

Carbon Bundle
¥ Command Line Utility
C++ Tool
CoreFoundation Tool m
CoreServices Tool
Foundation Tool
Standard Tool
¥ Dynamic Library
BSD Dynamic Library
Carbon Dynamic Library
Cocoa Dynamic Library
¥ Framework
Carhnn Frameweork

This project builds a command-line tool written in C.

(" cancel) Previous @
A

Name the project MartenCGI and point the project directory to the project folder.

D8 Assistant

.; New Standard Tool

Project Name: MartenCGI
Project Directory: ~/Desktop/Marten CGl Example /| }:J [Choose...)

The project directory ~/Desktop/Marten CGCl Example/ will be created if necessary, and
the project file MartenCGl.xcode will be created therein.

(" cCancel) (Previousj) (—FmH

4

Marten Xcode project settings

There are four settings that must be adjusted for this project. Select the MartenCGI project icon under Groups & Files and click the
Info button on the toolbar. The MartenCGI project info window will open. Click the Styles tab and scroll down to the ZeroLink
checkbox. Deselect ZeroLink.

000 B MartenCGl
f = f A A 1
i MartenC] E+] v! \ ‘\ O =0
Active Target Action Build Build and Go Tasks Info Editor
Groups & Files File Name 4| < |Code
v [MartenCGI B | & main.c v
5o ST e
ME ‘_u:r eNe Project "MartenCGI" Info
C
v [10‘:"' | General = CodeSense | Styles | Comments |
Ma
Tlt Produ Active Build Style: = Development H"
& ma
¥) Targer ey s —
CEMarte & |ibrary Style Static 0
v/ Executall & |nitialization Routine
o Marte & prebinding '
» [Errors an
¥ 2 Find Res| @ Exported Symbols File
b lfl Bookmar & cyrrent Version vy
b 3 5CM @ Compatibility Version 3
@ Project §
Impleme (‘!’)(j) Edit Setting
hi-:';_i’g‘ NIE Files. =
Activating this setting indicates that binaries should be linked with
ZeroLink linking whenever possible. This setting is enabled by defaultin h
— the Development build style (accessible from the Styles tab of the project
inspector) and should be enabled or disabled there. Note: ZeroLink
linking is not to be used for release or deployment builds. [ZERC_LINK]
Q | 109 items @
P

Next, name the product "testMarten.cgi". Be sure to spell it correctly, it must match the action attribute for the form in the "Show

Form" universal.

nnmon

B MartenCGlI

Active Targ

"_‘ﬁMar’(enC e

'

Build and Go

N,

Build

Info

Action Tasks

et

Croups & Files
v & MartenCGl

m

[Sourcr ene

File Name 4| & |Code

Project "MartenCGI” Info

Ld]
| Docul
_‘“ Ma
| Produ
& ma
v Targets
y"a Marte
w # Executal
< Marte
b (B Errors an
¥, Find Res|
b [Bookrar
b 3 SCM

i Project §
& Impleme
b5 NIB Files

Active Build Style: [Development

Code Sense | Styles | Comments }

f
General

Value

=

All Settings #

e S)
@ Don't Dead-Strip Inits and Terms
@ Warning Linker Flags

@ Other Linker Flags

@ Executable Prefix

@ Executable Suffix

@ Wrapper Extension

.

®C N

—

This is the basename of the product generated. [PRODUCT_NAME]

| 108 items @

P

We don't need Fix & Continue, so deselect that checkbox.

aNala) ™ MartenCGl
A A
@ MartenC) v : N\ g N U
v v Y
Active Target Action Build Build and Go Tasks nfo
| Groups & Files | | File Name 4 4 Code
v [MartenCGI B | ¢ mainc v
> sourcr ST e -
Vi e . 806 Project "MartenCGI" Info
L oma
vl 'Docut " Ceneral | Code Sense | Styles | Comments 7'
© Ma |
T[_ Produ Active Build Style: Development |%]
“4Ma 00— |
bTgMarte [No Common Blocks] |
v </ Executah Make Strings Read-Only Iz |
</ Mart® &g Generate Position Dependent Code O
b B Errors an Fix & Continue D |
¥4 Find Resl & Target CPU Géneric PowerPC .
b2 Bookmar Instruction Scheduling PowerPC G4 [-mtune=G4] ER |
B Use 64-bit Integer Math a |
®O Edit Setting
hi_w NIE Files = |
Activating this setting indicates that binaries should be built for use with
Fix & Continue. This setting is enabled by default in the Development L
™ build style (accessible from the Styles tab of the project inspector) and

should be enabled or disabled there. Note: It is not recommended that
release or deployment builds be built for use with Fix & Continue. Only
applies to GCC 3.3. [GCC_ENABLE_FIX_AND_CONTINUE, -fix-and-

continue]

Q 109 items @

o

Finally, the Marten_Headers header file should be included in every file of the project, so type that in as the Prefix Header:

8ene Project "MartenCGI" Info

————————— General Code Sense | Styles | Comments

Active Build Style: Development |%]

All Settings =
B Enable C++ Exceptions
Enable C++ Runtime Types
3 Enable Objective-C Exceptions
Assume Non-nil Receivers
B Recognize Pascal Strings
Short Enumeration Constants
BE Enable Altivec Extensions
CodeWarrior-5Style Inline Assembly
BT MarteninlineProject.h|
Precompile Prefix Header (=] "
B C Dialects to Precompile -

®E (" Edit Setting |

Sl

=

‘alue

"AODARODRE

Implicitly include the named header. The path given should either be a
project relative path or an absolute path. [GCC_PREFIX_HEADER]

Q 109 items @

P

Modifying the exported C files

Next delete the main.c file from your project and add all of the C source code files to the Source group of your Xcode project. The
files are:

CGI Project.inl.c

CGI Project.inl.h
CGI Section.inl.c
cgic.c

cgic.h

MacOSX CGIC.c
MacOSX CGIC.h
MacOSX CGIC.c
MartenInlineProject.h

As it stands, the C files will not yet compile. First you must implement the workaround described in "Marten-Make Command
Line Example" to fix the export bug for the project C file and header file (this bug has been fixed for the soon-to-be-released
Marten 1.2). The necessary modifications are described on pages 11 and 12 of that document. After those changes have been put
in, open the CGI Section.inl.c file. You must provide declarations of the functions contained in the file cgic.c, so add an include
statement "#include "cgic.h"" somewhere towards the top of the file.

®06 | CGl Section.inl.c
Build Build and Go Project

B CGI Section.inl.c:10 = <No selected symbaol>
A¥ 4 YPL Section File */
S

CGI Section.inl.c
Copyright: 2884 Andescotia LLC

*/

#include "MartenInlineProject.h”
#include "cgic.h"

enum opTrigaer vpx_method_MAIN_case_1_local_15{Y_Ervironment
enum opTrigaer vpx_method_MAIN_case_1_local_15{Y_Ervironment

{
HEADER (2}

INPUT (8,8
result = kSuccess;

The Boutell CGIC library provides a MAIN routine which performs some setup and then calls a routine called "cgiMain".
Therefore the exported MAIN in the file CGI Project.inl.c must be modified to be this cgiMain routine. Change the main routine
definition prefix to "int cgiMain(void)" and add two declarations for argc and argv as shown:

Before:

void init_project_CGI_2A_Project{void};
void init_project_CGI_2A_Project{void)

if{ gWPLCGI_2A_Project_Envirorment == WULL 3
gYPLCGI_26_Project_Enviromment = VYPLEnvirommentCreate!"CGI Project”, kvpl_St

lood_project_CGI_28_Project{g¥PLCGI_28_Project_Environment s

YPLEny iromment.Init (g¥PLCGI_26_Project_Environment, wpl_INIT);

H
+
int main{int argo,chor *orgv[])
{ init_project_CGI_2@_Project();
return YPLEnvironmentMain{gYPLCGI_2A_Project_Environment ,wpl_MAIN,qrgc,orgyv’;
+

After:

void init_project_CGI_28_Project(void);
void init_project_CGI_2A_Project{void)

if{ g¥PLCGI_26_Project_Enviromment == NULL
gYPLEGI_28_Project_Envirorment = YPLEnvironmentCreate("CGI Project”, kvpl_S

lood_project_CGI_28_Project{g¥PLCGI_28_Project_Environment s
YPLEny iromment.Init (g¥PLCGI_26_Project_Environment, wpl_INIT);
}
int cgiMaindvoid})

int argc = A;
char *argy = HULL3|

init_project_CGI_2@_Project();

return YPLEnvironmentMain{gYPLCGI_2A_Project_Environment ,wpl_MAIN,qrgc,orgyv’;

Finally add the MartenEngine and MartenStandard frameworks. The final set of source files for the project should look like:

8eoe ™ MartenCGl =)
Sl @8 N\ N 0 O @ @
A A -

Active Target Action Build Build and Go Info Editor Search
Groups & Files File Name 4| < |Code a A e
v 5 MartenCGI B | ¢ CGlProjectinl.c v)

B ET N) - CCiProkctinth =
» K= MartenEngine.framework L CC_' Section.inl.c v ¥
» = MartenStandard.framework L cg!c.; v ﬂ
. o M cgic. v
(8} cal Project.inl.c & MacOSX CGIC.c v o
H| CGl Project.inl.h & MacOSX CGIC.h o
¢ CGl Section.inl.c & MacOSX_CGIC.c v =
. cgic.c §* MartenEngine.framework)
) €gic.h #H MartenInlineProject.h o
& MacDSX CGIC.c §* MartenStandard.framework L4
#| MacOSX CGIC.h
¢ MacOsX_CCIC.c
1 MartenInlinePraject.h
[Documentation
v Preducts U
MartenCGl
'@Targets

b MartenCGl

v < Executables
4 MartenCGl '
b /B Errors and Warnings v = 4

You are finished with creation of the project, now it is time to build the executable.

Building the CGI executable with Xcode

Select the "Detailed Build Results" command under the Build menu to open the Build Results window. Then click the "Clean All"
button on tool bar to clear any previously created object code. Finally, click the Build button on the toolbar. The project will be
compiled and linked with build results similar to:

806 ™ Build Results (=]
S Mals) * Mail) « Dev| 3] '(\ ﬁ & @

Active Target Active Executable Active Build Style Build Clean All Run Debug

Build succeeded (2 warnings) @ Succeeded 2
¥ @ Building target “MartenCGI" with build style “Develop " (optimi level ‘0%, debu

¥ &) Compiling CGI Project.inl.c (1 warning)
A passing arg 4 of “VPLEnvironmentMain' from incompatible pointer type
Compiling CGI Section.inl.c
Compiling cgic.c
Compiling MacOSX CCGIC.c
Compiling MacOSX_CGIC.c
¥ & Linking /Users/admin/Tutorials/Marten CGI Example/build/testMarten.cgi (1 warning)
AL warning prebinding disabled because dependent library: @executable_path/.. /Framew
Build succeeded (2 warnings)

Quit Xcode. The set of files in the project folder should look match the following list and the actual CGI executable should be
named testMarten.cgi and found in the "build" folder.

06006 Marten CGI Example —
1 of 15 selected, 21.43 GB available
- -
CGl Project CGl Project.inl.c CGI Project.inl.h
@ - m
VPX VPL

CGI Project.vpx CGl Section.inl.c

CGI Section.vpl

=

MarteninlineProject.h MacOSX CGIC.h

.CL @ L . h'-.

cgic.c MacOSX_CGIC.c cgic.h
L. —
=
MartenCGlL.1 MartenCGl.xcode build
Y
cXaXa) [build =
2 itemms, 21.43 GB available
T___'_‘a'—- 3 L.
=
MartenCGl.build testMarten.cgi
P

Installing the CGI executable

A CGI executable is launched by the MacOS X Apache server when it is invoked by the browser. For this to happen, the
executables must be placed in a special location, the CGI-Executables folder found in the directory /Library/WebServer/. Copy the
executable file "testMarten.cgi" into /Library/WebServer/CGI-Executables/. You can use the Option Drag technique as shown here:

P06 build p—

2 items, 69.8 GB available

= @L
[=
MartenCGl.build testMarten.cgi
VA
eoe [~ WebServer o

2 items, 69.8 GB available

v i v

CGl-Executables Documents

Running the CGI executable

To run your CGI executable, the Apache web server on your Mac must be running. To check that it is, open the System Preferences
application and click on the Sharing icon of the Internet & Network group. Make sure the Personal Web Sharing service is checked
and on. Ifitis, then launch a web browser (Safari is used for the following illustrations) and navigate to the URL "http://localhost/
cgi-bin/testMarten.cgi". The CGI executable will be invoked and generate the web page:

806 Marten CCI Test 5
[« +|[0][c][+] @nup/locanost/cgi-binftestMarten.cgi 1~ Coogle |
[I1 Apple .Mac Amazon eBay Financev Newsv Yahoo! Apple Developer »

Hello World!

Text Field containing Plaintext

Your Name

F e —
| Submit Request |

Type your name into the "input text" box and click the Submit Request button.

00 Marten CGl Test

E @ Qhttp:,-’,"Iocalhost,-’cgi—bin,-’testMarten.cgi . 'Qv Google)

[I1 Apple .Mac Amazon eBay Financev Newsv Yahoo! Apple Developer »

Hello World!

Text Field containing Plaintext

Scott Anderson Your Name

(5u bmit Reg ﬂest‘

The CGI executable will be invoked and this time, the "Handle Submit" universal will be called to display the contents of the text
box.

00 Marten CGI Test
E] @ Qhttp:,-’,"Iocalhost,-’cgi—bin,-’testMarten.cgi - 'Qv Google
[0 Apple .Mac Amazon eBay Financev News¥ Yahoo! Apple Developer »

Hello World!

Name: Scott Anderson (8

Text Field containing Plaintext

Your Name

(_ Submit Request_\

This concludes the Marten CGI example. If you wish to create more CGI executables, we recommend designing a class library to
make coding easier using the following guidelines:

1. Most of a web page consists of static information. Static content is best stored as a persistent. For example, the entire
functionality of the Show Form universal is better implemented as a persistent containing an instance of a class whose attributes
contain a "specification” (probably consisting of instances of other classes) of the web page. This class could contain a "Print Me"
method that would take the specification and actually print it. Show Form would then just be a persistent operation followed by a
data-driven class method.

2. The "specification" described above could also specify what method to call when some action is taken. In the Prograph
language, such functionality is provided by injects and the "call" primitive. A good design should include some way to "call"
methods by name and supply the appropriate parameters. An example of this kind of design is found in the Simple App example
(cf: <Simple Method Call> etc.).

